3-Absorbing Principal T-Ideals in the Ternary Semiring of Non-positive Integers
DOI:
https://doi.org/10.18311/jims/2019/22485Keywords:
Ternary Semiring, Prime Ideal, 3-absorbing Ideal, Finitely Generated Ideal, T-ideal.Abstract
Since the product of even number of elements of ternary semiring S may not be element of S, the concept of 2-absorbing ideal in S can not be defined. In this paper, we introduce the concept of 3-absorbing ideals in a commutative ternary semiring with identity element and obtain characterizations of 3-absorbing principal ideals and 3-absorbing principal T-ideals in the ternary semiring of non-positive integers.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 K. J. Ingale, J. N. Chaudhari
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-01-30
Published 2018-12-12
References
Ayman Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. Vol. 75(2007), 417−429.
J. N. Chaudhari, 2-absorbing ideals in semirings, International Journal of Algebra 6(6)(2012), 265-270.
J. N. Chaudhari, 2-absorbing ideals in the semiring of non-negative integers, Journal of the Indian Math. Soc. 80(2013), no. 3-4, 235-241.
J. N. Chaudhari and K. J. Ingale, A note on ideals in the semiring Z+0, Journal of the Indian Math. Soc. 79(2012), no. 1-4, 33-39.
J. N. Chaudhari and K. J. Ingale, Ideals in the ternary semiring of non-positve integers, Bull. Malaysian Math. Sci. Soc. (2) 37(4) (2014), 1149-1156.
T. K. Dutta and S. Kar, On regular ternary semirings, Advances in Algebra, Proceedings of the ICM Satellite Conference in Algebra and Related Topics, World Scientific (2003), 343-355.
T. K. Dutta and S. Kar, On prime ideals and prime radical of ternary semirings, Bull. Calcutta Math. Soc. 97(2005), no. 5, 445-454.
T. K. Dutta and S. Kar, On semiprime ideals and irreducible ideals of ternary semirings, Bull. Calcutta Math. Soc. 97(2005), no. 5, 467-476.
J. S. Golan, Semiring and their applications, Kluwer Academic publisher Dordrecht, 1999.
V. Gupta and J. N. Chaudhari, Prime ideals in semirings, Bull. Malaysian Math. Sci. Soc., (2)34(2)(2011), 417-421.
S. Kar, Ideal theory in the ternary semiring Z−0, Bull. Malaysian Math. Sci. Soc .(2)34(2011), no. 1, 69-77.
W. G. Lister, Ternary rings, Trans. Amer. Math. Soc., 154(1971), 37-55.