Weighted β−absolute Convergence of Single and Double Walsh−Fourier Series of Functions of Φ âˆ’ ∧ −BV
DOI:
https://doi.org/10.18311/jims/2019/22561Keywords:
Absolute Convergence, Walsh−Fourier Series, Functions of φ − ∧−Bounded VariationAbstract
For one variable function of Φ − ∧−bounded variation on [0,1] the sufficient condition for the weighted β−absolute convergence of its Walsh−Fourier series ∑m γm| ˆ f(m)|β, where 0 < β < 2 and {γm} is a weighted sequence, is obtained and is extended for two dimensional analogue.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Kiran N. Darji, Rajendra G. Vyas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-01-30
Published 2018-12-12
References
Darji, K. N. and Vyas, R. G., A note on Walsh−Fourier coefficients, Bull. Math. Anal. Appl., 4 (2) (2012), 116−119.
Darji, K. N. and Vyas, R. G., On absolute convergence of double Walsh−Fourier series, Indian J. Math., 60 (1) (2018), 45−65.
Gogoladze, L. and Meskhia, R., On the absolute convergence of trigonometric Fourier series, Proc. A. Razmadze Math. Inst., 141 (2006), 29−40.
Golubov, B., Efimov, A. and Skvortsov, V., Walsh Series and Transforms: Theory and Applications, Springer Science+Business Media Dordrecht, 1991.
McLaughlin, J. R., Absolute convergence of series of Fourier coefficients, Trans. Amer. Math. Soc., 184 (1973), 291−316.
M´oricz, F., Absolute convergence of Walsh−Fourier series and related results, Anal. Math., 36 (4) (2010), 275−286.
M´oricz, F. and Veres, A., Absolute convergence of double Walsh−Fourier series and related results, Acta Math. Hungar., 131 (1) (2011), 122−137.
M´oricz, F. and Veres, A., Absolute convergence of multiple Fourier series revisited, Anal. Math., 34 (2) (2008), 145−162.
U´lyanov, P. L., Series with respect to a Haar system with monotone coefficients (in Russian), Izv. Akad. Nauk. SSSR Ser. Mat., 28 (1964), 925−950.
Vyas, R. G., On the absolute convergence of Fourier series of functions of ΛBV (p) and ϕΛBV , Georgian Math. J., 14 (4) (2007), 769−774.
Vyas, R. G. and Darji, K. N., On absolute convergence of multiple Fourier series, Math. Notes, 94 (1) (2013), 71−81; Russian transl., Mat. Zametki, 94 (1) (2013), 81−93.
Vyas, R. G. and Darji, K. N., On multiple Fourier coefficients of functions of φ − Λ−bounded variation, Math. Inequal. Appl., 17 (3) (2014), 1153-1160.
Vyas, R. G. and Darji, K. N., On multiple Walsh−Fourier coefficients of functions of φ − Λ−bounded variation, Arab. J. Math., 5 (2) (2016), 117−123.
Waterman, D., On convergence of Fourier series of functions of generalized bounded variation, Studia Math., 44 (1972), 107−117.