Generalized Mittag-Leffler Matrix Function and Associated Matrix Polynomials

Jump To References Section

Authors

  • ,IN
  • ,IN
  • ,IN

DOI:

https://doi.org/10.18311/jims/2019/22577

Keywords:

Mittag-Leffler Matrix Function, Matrix Differential Equation, Generalized Konhauser Matrix Polynomial, Generating Function.

Abstract

The Mittag-Leffler function has been found useful in solving certain problems in Science and Engineering. On the other hand, noticing the occurrence of certain matrix functions in Special functions' theory in general and in Statistics and Lie group theory in particular, we introduce here a matrix analogue of a recently generalized form of Mittag-Leffler function. This function yields the matrix analogues of the Saxena-Nishimoto's function, Bessel-Maitland function, Dotsenko function and the Elliptic Function. We obtain matrix differential equation and eigen matrix function property for the proposed matrix function. Also, a generalized Konhauser matrix polynomial is deduced and its inverse series relations and generating function are derived.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2018-12-12

How to Cite

Sanjhira, R., Nathwani, B. V., & Dave, B. I. (2018). Generalized Mittag-Leffler Matrix Function and Associated Matrix Polynomials. The Journal of the Indian Mathematical Society, 86(1-2), 161–178. https://doi.org/10.18311/jims/2019/22577

 

References

Abul-Dahab, M. A., Bakhet A. K., A certain generalized gamma matrix functions and their properties, J. Ana. Num. Theor. 3(1) (2015), 63-68.

Dave, B. I. and Dalbhide, M., Gessel-Stanton's inverse series and a system of q-polynomials , Bull. Sci. Math. 138(2014), 323-334.

Dunford, N. and Schwartz, J., Linear Operators, part I, General theory, Volume I, Interscience Publishers, INC., New York, 1957.

Hille, E., Lectures on Ordinary Differential Equations, Addison-Wesley, New York, 1969.

Mathai, A. M., Haubold, H. J., Saxena R. K.,The H-function: Theory and Applications, Centre for Mathematical sciences, Pala Campus, Kerala, India, 2008.

Herz, C. S., Bessel functions of matrix argument, Ann. of Math. 61(1955), 474-523.

James, A. T., Special Functions of Matrix And Single Argument in Statistics, in Theory and Applications of Special Functions, Academic Press, New York, 1975.

Jodar, L., Company, R., Ponsoda, E., Orthogonal matrix polynomials and systems of second order differential equations, Differential Equations and Dynamic System, 3(3)(1995), 269-228.

Jodar, L., Cortes, J. C., Some properties of Gamma and Beta matrix functions, Appl. Math. Lett., 11(1)(1998), 89-93

Jodar, L., Cortes J. C., On the hypergeometric matrix function, Journal of Computational and Applied Mathematics, 99(1998), 205-217.

Jodar, L., Defez, E., Ponsoda, E., Matrix quadrature integration and orthogonal matrix polynomials, Congressus Numerantium, 106(1995), 141–153.

Jodar, L., Legua, L., Law, A. G., A matrix method of Frobenius and applications to generalized Bessel equations, Congressus Numerantium, 86(1992), 7–17.

Khatri, C. G., On the exact finite series distribution of the smallest or the largest root of matrices in three situations, J. Multivariate Anal., 12(2)(1972), 201–207.

Jodar, L., Sastre, J., On Laguerre matrix polynomial, Utilitas Mathematica, 53(1998), 37–48.

Luke, Y. L., The Special functions and their Approximations, Volume I, Academic Press, New York, London, 1969.

Miller, W., Lie Theory and Special Functions, Academic Press, New York, 1968.

Mittag-Leffler, G., Sur la nouvelle fonction eα(x), C. R. Acad. Sci., Paris, 137(1903), 554–558.

Nathwani, B. V., Dave, B. I., Generalized Mittag-Leffler function and its properties, The Mathemaics Student, 86(1-2)(2017), 63–76.

Prabhakar, T. R., A singular equation with a generalized Mittag-Leffler function in the kernel, Yokohama Mathematical Journal, 19(1971), 7–15.

Ricci, P., Tavkhelidze, I., An introduction to operational techniques and special polynomials , Journal of Mathematical Sciences, 157(1)(2009), 161–189.

Rowell, D., Computing the matrix exponential the Cayley-Hamilton method, Massachusetts Institute of Technology Department of Mechanical Engineering, 2.151 Advanced System Dynamics and Control (2004), 1–5 web.mit.edu/2.151/www/Handouts/CayleyHamilton.pdf

Sastre, J., Defez, E., Jodar, L., Laguerre matrix polynomial series expansion:theory and computer application, Math. Comput. Modelling, 44(2006), 1025–1043.

Saxena, R. K., Nishimoto, K. N., Fractional calculus of generalized Mittag-Leffler functions , J. Frac. Calc., 37(2010), 43–52.

Shehata, Ayman, Some relation on Konhauser matrix polynomial, Miskolc Mathematical Notes, 17(1)(2016), 605–633.

Shukla, A., Prajapati, J. C., On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336(2) (2007), 797–811.

Wiman, A., Uber de fundamental satz in der theoric der funktionen eα(x), Acta Math., 29(1905), 191–201.