Hypercyclicity, Supercyclicity And Cyclicity Of Composition Operators On Lp Spaces
DOI:
https://doi.org/10.18311/jims/2019/22578Keywords:
Hypercyclicity, Supercyclicity, Cyclicity, Composition Operator on lpAbstract
In this paper, we discuss hypercyclicity, supercyclicity and cyclicity of composition operators on lp(1 ≤ p < ∞). We prove that no composition operator is hypercyclic on lp. Further, we also prove that CΦ : lp → lp is supercyclic if and only if Φ is injective and Φn has no fixed point in N, for any n ∈ N. We also give a sufficient condition and some necessary conditions for cyclicity of composition operator.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Vijay Kumar Srivastava, Harish Chandra
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ansari, I. S., Hypercyclic and Cyclic Vectors, J. Funct. Anal., 128 (1995), 374-383.
Ansari, I. S., Bourdon, S. P., Some properties of cyclic operators, Acta Sci. Math.(Szeged), 63 (1997), 195-207.
Bayart, F., Matheron, E., Dynamics of Linear Operators, Cambridge University Press, 2009.
Birkhoff, D. G., Demonstration dun theoreme sur les fonctions entieres, C. R. Acad. Sci. Paris, 189 (1929), 473-475.
Bourdon, S. P, Invariant manifold of hypercyclic vectors, Proc. Amer. Math. Soc., 118 (1993), 845-847.
Grosse-Erdmann, G. K., Manguillot, P. A., Linear Chaos, Springer-Verlag London Limited, 2011.
MacLane, R. G., Sequences of derivatives and normal families , J. Analyse Math., 2 (1952/53), 72-87.
Rolewicz, S., On orbits of element, Studia Math., 32 (1969), 17-22.
Shapiro, H. J., Composition operators and classical function theory, Springer-Verlag, 1993.
Singh, K. R., Manhas, S. J., Composition Operators on Function Spaces, North-Holland, NewYork, 1993.
Singh, L., A study of composition operators on l2, Thesis, Banaras Hindu University, Varanasi, 1987.