Generalized Hermite- based Apostol- Bernoulli, Euler, Genocchi polynomials and their relations

Jump To References Section

Authors

  • Department of Mathematics, Amity Institute of Applied Sciences, Amity University, Noida ,IN
  • Department of Mathematics, Amity Institute of Applied Sciences, Amity University, Noida ,IN

DOI:

https://doi.org/10.18311/jims/2020/22695

Keywords:

Apostol-Hermite-Bernoullli polynomials, Apostol-Hermite-Euler polynomials and Apostol-Hermite-Genocchi polynomials, Summation formulae, Symmetric identities

Abstract

In this paper, we have generalized Apostol-Hermite-Bernoullli polynomials, Apostol-Hermite-Euler polynomials and Apostol-Hermite-Genocchi polynomials. We have shown that there is an intimate connection between these polynomials and derived some implicit summation formulae by applying the generating functions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2020-05-15

How to Cite

Chaturvedi, A., & Rai, P. (2020). Generalized Hermite- based Apostol- Bernoulli, Euler, Genocchi polynomials and their relations. The Journal of the Indian Mathematical Society, 87(1-2), 9–21. https://doi.org/10.18311/jims/2020/22695
Received 2018-11-13
Accepted 2019-12-05
Published 2020-05-15

 

References

T. M. Apostol, On the Lerch Zeta function, Pacific J. Math., 1(1951), 161–167.

E. T. Bell, Exponential polynomials, Ann. Math., 35(1934), 258–277.

G. Dattoli, B. Germano and P. E. Ricci, Hermite polynomials with more than two variables and associated bi-orthogonal functions, Integral Transforms and Special Functions, 20(1) (2009), 17–22.

Q. M. Luo, Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials, Math. of Comp. 78 (2009), 2193-2208.

Q. M. Luo, Fourier expansions and integral representations for the Genocchi polynomials, J. Integer Seq. 12 (2009), 1–9.

Q. M. Luo, q-extension for the Apostol-Genocchi polynomials, Gen. Math. 17 (2009), 113–125.

Q. M. Luo, Some formulas for the Apostol-Euler polynomials associated with Hurwitz zeta function at rational arguments, Applicable Analysis and Discrete Mathematics 3(2) (2009), 336-346.

Q. M. Luo, The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order, Integral Transform and Special Functions, 20(5-6) (2009), 377–391.

Q. M. Luo, Extension for the Genocchi polynomials and its Fourier expansions and integral representations, Osaka J. Math. 48 (2011), 291–310.

Q. M. Luo and H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308(2005), 290–302.

Q. M. Luo and H. M. Srivastava, Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Computers and Mathematics with Applications, 51(3–4) (2006), 631–642.

Q. M. Luo and H. M. Srivastava, Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind, Applied Math. & Comput. 217(12) (2011), 5702–5728.

M. A. O¨ zarslan, Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials, Adv. Diff. Eq. (2013), 116, DOI: 10.1186/1687-1847-2013-116.

M. A. Pathan and W. A. Khan, Some new classes of generalized Hermite-based Apostol-Euler and Apostol-Genocchi polynomials, Fasciculi Mathematici, 55(2015), 153-170, DOI: 10.1515/fascmath-2015-0020.

E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960.

H. M. Srivastava and H. L. Manocha, Atreatise on Generating Functions, Halsted, New York, 1984.

H. M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000), 77-84.

R. Tremblay, S. Gaboury and B. J. Fugere, Some new classes of generalized Apostol-Euler and Apostol-Genocchi polynomials, Int. J. Math and Math. Sci. (2012), DOI:10.1155/2012/182785.

R. Tremblay, S. Gaboury and B. J. Fugere, A further generalization of Apostol-Bernoulli polynomials and related polynomials, Honam Math. J. 34 (2012), 311–326.