A Convolution Approach on Partial Sums of Certain Harmonic Multivalent Functions

Jump To References Section

Authors

  • Department of Mathematics, Amity University, Lucknow - 226010 ,IN
  • Department of Mathematics, Ram Sahai Govt. Degree College, Bairi-Shivrajpur, Kanpur - 209205 ,IN

DOI:

https://doi.org/10.18311/jims/2022/24179

Keywords:

Harmonic functions, multivalent functions, Hadamard product, partial sums
30C45

Abstract

The main object of this paper is to obtain sharp lower bounds for the ratio of convolution of harmonic multivalent function to its sequences of partial sums. Relevant connections of the results presented here with various known results are briefly indicated.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2022-01-27

How to Cite

Patel, R., & Porwal, S. (2022). A Convolution Approach on Partial Sums of Certain Harmonic Multivalent Functions. The Journal of the Indian Mathematical Society, 89(1-2), 117–133. https://doi.org/10.18311/jims/2022/24179
Received 2019-09-04
Accepted 2021-12-09
Published 2022-01-27

 

References

Afaf A. Ali Abubaker and M. Darus, Partial sums of analytic functions involving generalized Cho-Kwon-Srivastava operator, Int. J. Open Prob. Compl. Anal., 2 (3) (2010), 181–188.

O. P. Ahuja and J. M. Jahangiri, Multivalent harmonic starlike functions, Ann. Univ. Mariae Curie-Sklodowska, Sect A., 55(1) (2001), 1–13.

J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Series A.I. Math., 9 (1984), 3–25. DOI: https://doi.org/10.5186/aasfm.1984.0905

K. K. Dixit and S. Porwal, A convolution approach on partial sums of certain analytic and univalent functions, J. Inequal. Pure Appl. Math., 10 (4) (2009), Art.101, 1–17.

B. A. Frasin, Generalization of partial sums of certain analytic and univalent functions, Appl. Math. Lett., 21 (7) (2008), 735–741. DOI: https://doi.org/10.1016/j.aml.2007.08.002

S. Porwal, Partial sums of certain harmonic univalent functions, Lobachevski, J. Math., 32 (4) (2011), 366–375. DOI: https://doi.org/10.1134/S1995080211040184

S. Porwal, A convolution approach on partial sums of certain harmonic univalent functions, Int. J. Math. Math. Sci., (2012), Art. ID 509349, 1-10. DOI: https://doi.org/10.1155/2012/509349

S. Porwal and K. K. Dixit, Partial sums of starlike harmonic univalent functions, Kyungpook Math. J., 50 (3) (2010), 433–445. DOI: https://doi.org/10.5666/KMJ.2010.50.3.433

S. Porwal and A. Singh, Partial sums of generalized class of harmonic univalent functions involving hypergeometric functions, Acta Univ. Apul., 33 (2013),53-70.

R. K. Raina and D. Bansal, Some properties of a new class of analytic functions defined in terms of a Hadamard product, J. Inequl. Pure Appl. Math., 9 (1) (2008), Art. 22, 1–20.

T. Rosy, K. G. Subramanian, and G. Murugusundaramoorthy, Neighbourhoods and partial sums of starlike based on Ruscheweyh derivatives, J. Inequl. Pure Appl. Math., 4 (4), (2003), Art. 64, 1–8.

E. M. Silvia, On partial Sums of convex functions of order , Houston J. Math., 11 (3) (1985), 397–404.

H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl., 209 (1997), 221–227. DOI: https://doi.org/10.1006/jmaa.1997.5361

E. Yasar and S. Yalcin, Partial sums of certain harmonic multivalent functions, J. Ineq. Spec. Funct., 4 (2013), 19–33.

E. Yasar and S. Yalcin, Partial sums of starlike harmonic multivalent functions, Afr. Mat., 4(2) (2013), 13–16. DOI: https://doi.org/10.1007/s13370-013-0188-9