A Convolution Approach on Partial Sums of Certain Harmonic Multivalent Functions
DOI:
https://doi.org/10.18311/jims/2022/24179Keywords:
Harmonic functions, multivalent functions, Hadamard product, partial sumsAbstract
The main object of this paper is to obtain sharp lower bounds for the ratio of convolution of harmonic multivalent function to its sequences of partial sums. Relevant connections of the results presented here with various known results are briefly indicated.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ruchi Patel, Saurabh Porwal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2021-12-09
Published 2022-01-27
References
Afaf A. Ali Abubaker and M. Darus, Partial sums of analytic functions involving generalized Cho-Kwon-Srivastava operator, Int. J. Open Prob. Compl. Anal., 2 (3) (2010), 181–188.
O. P. Ahuja and J. M. Jahangiri, Multivalent harmonic starlike functions, Ann. Univ. Mariae Curie-Sklodowska, Sect A., 55(1) (2001), 1–13.
J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Series A.I. Math., 9 (1984), 3–25. DOI: https://doi.org/10.5186/aasfm.1984.0905
K. K. Dixit and S. Porwal, A convolution approach on partial sums of certain analytic and univalent functions, J. Inequal. Pure Appl. Math., 10 (4) (2009), Art.101, 1–17.
B. A. Frasin, Generalization of partial sums of certain analytic and univalent functions, Appl. Math. Lett., 21 (7) (2008), 735–741. DOI: https://doi.org/10.1016/j.aml.2007.08.002
S. Porwal, Partial sums of certain harmonic univalent functions, Lobachevski, J. Math., 32 (4) (2011), 366–375. DOI: https://doi.org/10.1134/S1995080211040184
S. Porwal, A convolution approach on partial sums of certain harmonic univalent functions, Int. J. Math. Math. Sci., (2012), Art. ID 509349, 1-10. DOI: https://doi.org/10.1155/2012/509349
S. Porwal and K. K. Dixit, Partial sums of starlike harmonic univalent functions, Kyungpook Math. J., 50 (3) (2010), 433–445. DOI: https://doi.org/10.5666/KMJ.2010.50.3.433
S. Porwal and A. Singh, Partial sums of generalized class of harmonic univalent functions involving hypergeometric functions, Acta Univ. Apul., 33 (2013),53-70.
R. K. Raina and D. Bansal, Some properties of a new class of analytic functions defined in terms of a Hadamard product, J. Inequl. Pure Appl. Math., 9 (1) (2008), Art. 22, 1–20.
T. Rosy, K. G. Subramanian, and G. Murugusundaramoorthy, Neighbourhoods and partial sums of starlike based on Ruscheweyh derivatives, J. Inequl. Pure Appl. Math., 4 (4), (2003), Art. 64, 1–8.
E. M. Silvia, On partial Sums of convex functions of order , Houston J. Math., 11 (3) (1985), 397–404.
H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl., 209 (1997), 221–227. DOI: https://doi.org/10.1006/jmaa.1997.5361
E. Yasar and S. Yalcin, Partial sums of certain harmonic multivalent functions, J. Ineq. Spec. Funct., 4 (2013), 19–33.
E. Yasar and S. Yalcin, Partial sums of starlike harmonic multivalent functions, Afr. Mat., 4(2) (2013), 13–16. DOI: https://doi.org/10.1007/s13370-013-0188-9