On Total Edge Irregularity Strength of Some Graphs Related to Double Fan Graphs
DOI:
https://doi.org/10.18311/jims/2020/24427Keywords:
Total edge irregular strength, Double fan graph, Double fan ladder graph, Centralized double fan graph, Generalized parachute graphAbstract
Let G = (V(G),E(G)) be a simple, connected, undirected graph with non empty vertex set V(G) and edge set E(G). The function f : V(G) ∪ E(G) ↦ {1,2, ...,k} (for some positive integer k) is called an edge irregular total k−labeling where each two edges ab and cd, having distinct weights, that are f (a)+ f (ab)+ f (b) ≠f (c)+ f (cd)+ f (d). The minimum k for which G has an edge irregular total k−labeling is denoted by tes(G) and called total edge irregularity strength of graph G. In this paper, we determine the exact value of the total edge irregularity strength of double fan ladder graph, centralized double fan graph, and generalized parachute graph with upper path.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Husnul Khotimah, Yeni Susanti
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-01-30
Published 2020-05-15
References
M. Baca, S. Jendrol, M. Miller, and J. Ryan, On irregular total labeling, Discrete Math., 307, (2007), 1378–1388.
J. A. Gallian, A dynamic survey of graph labeling, Electronic J. Combin., 18, (2015), 247–252.
D. Indriati, Widodo, I. E.Wijayanti, and K. A. Sugeng, On total edge irregularity strength of generalized helm, AKCE Int. J. Graphs and Combin., 10, (2013), 147–155.
D. Indriati,Widodo, I. E.Wijayanti, and K. A. Sugeng and M. Ba˘ca, On total edge irregularity strength of generalized web graphs and related graphs, Math. Computer Sc., 9, (2015), 161–167.
J. Ivan˘co, and S. Jendrol, The total edge irregularity strength of trees, Discuss. Math. Graph Theory, 26 (2006), 449–456.
S. Jendrol, J. Miskuf and R. Sotak, Total edge irregularity strength of complete graphs and complete bipartite graphs, Discrete Maths., 310(3), (2010), 400–407.
M V. Modha and K. K. Kanani, K-cordial Labeling of Fan and Double Fan, Int. J. Appl. Math. Res., 2 (2015), 362-369.
R. W. Putra and Y. Susanti, On total edge irregularity strength of centralized uniform theta graphs, AKCE Int. J. Graphs and Combin., 15(1) (2018), 7–13.
R. W. Putra and Y. Susanti, The total edge irregularity strength of uniform theta graphs, J. Phys.: Conf. Ser., 1097 (2018), 012069.
I. Rajasingh and T. Arockiamary, Total edge irregularity strength of subdivided star graph, Triangular Snake, and Ladder, Int. J. Math. Archive, 12, (2016), 39-43.
l. Ratnasari and Y. Susanti, Total edge irregularity strength of ladder related graphs, Asian-European J. Maths.,(2018), doi:10.1142/S1793557120500722.
W. D. Wallis, Magic Graphs, 2011, Boston: Birkhí£user.
E. W. Weisstein, Fan graph, (2008). http://mathworld.wolfram.com/FanGraph.html Accessed 16.08.17.
E. W. Weisstein, Parachute graph, (2008). http://mathworld.wolfram.com/ParachuteGraph.html Accessed 16.08.17.