On Total Edge Irregularity Strength of Some Graphs Related to Double Fan Graphs

Jump To References Section

Authors

  • Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta ,ID
  • Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta ,ID

DOI:

https://doi.org/10.18311/jims/2020/24427

Keywords:

Total edge irregular strength, Double fan graph, Double fan ladder graph, Centralized double fan graph, Generalized parachute graph

Abstract

Let G = (V(G),E(G)) be a simple, connected, undirected graph with non empty vertex set V(G) and edge set E(G). The function f : V(G) ∪ E(G) ↦ {1,2, ...,k} (for some positive integer k) is called an edge irregular total k−labeling where each two edges ab and cd, having distinct weights, that are f (a)+ f (ab)+ f (b) ≠ f (c)+ f (cd)+ f (d). The minimum k for which G has an edge irregular total k−labeling is denoted by tes(G) and called total edge irregularity strength of graph G. In this paper, we determine the exact value of the total edge irregularity strength of double fan ladder graph, centralized double fan graph, and generalized parachute graph with upper path.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2020-05-15

How to Cite

Khotimah, H., & Susanti, Y. (2020). On Total Edge Irregularity Strength of Some Graphs Related to Double Fan Graphs. The Journal of the Indian Mathematical Society, 87(1-2), 83–95. https://doi.org/10.18311/jims/2020/24427
Received 2019-11-11
Accepted 2023-01-30
Published 2020-05-15

 

References

M. Baca, S. Jendrol, M. Miller, and J. Ryan, On irregular total labeling, Discrete Math., 307, (2007), 1378–1388.

J. A. Gallian, A dynamic survey of graph labeling, Electronic J. Combin., 18, (2015), 247–252.

D. Indriati, Widodo, I. E.Wijayanti, and K. A. Sugeng, On total edge irregularity strength of generalized helm, AKCE Int. J. Graphs and Combin., 10, (2013), 147–155.

D. Indriati,Widodo, I. E.Wijayanti, and K. A. Sugeng and M. Ba˘ca, On total edge irregularity strength of generalized web graphs and related graphs, Math. Computer Sc., 9, (2015), 161–167.

J. Ivan˘co, and S. Jendrol, The total edge irregularity strength of trees, Discuss. Math. Graph Theory, 26 (2006), 449–456.

S. Jendrol, J. Miskuf and R. Sotak, Total edge irregularity strength of complete graphs and complete bipartite graphs, Discrete Maths., 310(3), (2010), 400–407.

M V. Modha and K. K. Kanani, K-cordial Labeling of Fan and Double Fan, Int. J. Appl. Math. Res., 2 (2015), 362-369.

R. W. Putra and Y. Susanti, On total edge irregularity strength of centralized uniform theta graphs, AKCE Int. J. Graphs and Combin., 15(1) (2018), 7–13.

R. W. Putra and Y. Susanti, The total edge irregularity strength of uniform theta graphs, J. Phys.: Conf. Ser., 1097 (2018), 012069.

I. Rajasingh and T. Arockiamary, Total edge irregularity strength of subdivided star graph, Triangular Snake, and Ladder, Int. J. Math. Archive, 12, (2016), 39-43.

l. Ratnasari and Y. Susanti, Total edge irregularity strength of ladder related graphs, Asian-European J. Maths.,(2018), doi:10.1142/S1793557120500722.

W. D. Wallis, Magic Graphs, 2011, Boston: Birkhí£user.

E. W. Weisstein, Fan graph, (2008). http://mathworld.wolfram.com/FanGraph.html Accessed 16.08.17.

E. W. Weisstein, Parachute graph, (2008). http://mathworld.wolfram.com/ParachuteGraph.html Accessed 16.08.17.