Generalized Minkowski-type Fractional Inequalities Involving Extended Mittag-leffler Function
DOI:
https://doi.org/10.18311/jims/2020/24607Keywords:
Minkowski inequality, Mittag-Leffler function, fractional integral operatorAbstract
In this paper the reverse fractional Minkowski integral inequality using extended Mittag-Leffler function with the corresponding fractional integral operator is proved, as well as several related Minkowskitype inequalities.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Maja Andrić, Ghulam Farid, Josip Pećarić, Usama Siddique
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-01-30
Published 2020-07-01
References
B. Ahmed, A. Alsaedi, M. Kirane and B. T. Torebek, Hermite-Hadamard, HermiteHadamard-Fej´er, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, J. Comp. Appl. Math., 353. (2019), 120 - 129.
M. Andri´c, G. Farid, S. Mehmood and J. Peˇcari´c, P´olya-Szeg¨o and Chebyshev types inequalities via an extended generalized Mittag-Leffler function, Math. Inequal. Appl., 22. (4)(2019), 1365 - 1377.
M. Andri´c, G. Farid and J. Peˇcari´c, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21. (4)(2018), 1377 - 1395.
L. Bougoffa, On Minkowski and Hardy integral inequalities, J. Inequal. Pure Appl. Math., 7. (2)(2006), Article 60.
V. L. Chinchane, New approach of Minkowski fractional inequalities using generalized k-fractional integral operator, J. Indian Math. Soc., 85. (1-2)(2018), 32 - 41.
G. Farid, J. Peˇcari´c and ˇZ. Tomovski, Opial-type inequalities for fractional integral operator involving Mittag-Leffler function, Fractional Differ. Calc., 5. (1)(2015), 93 106.
S. K. Ntouyas, P. Agarwal and J. Tariboon, On P´olya-Szeg¨o and Chebyshev types inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal., 10. (2)(2016), 491 - 504.
T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19. (1971), 7 - 15.
G. Rahman, D. Baleanu, M. A. Qurashi, S. D. Purohit, S. Mubeen and M. Arshad, The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10. (8)(2017), 4244–4253.
T. O. Salim and A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl., 3. (5)(2012), 1 - 13.
E. Set, M ¨ Ozdemir and S. S. Dragomir, On the Hermite-Hadamard inequality and other integral inequalities involving two functions, J. Inequal. Appl., (2010), 2010: 148102.
A. K. Shukla and J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336. (2007), 797 - 811.
J. Vanterler da C. Sousa and E. Capelas de Oliveira, The Minkowski's inequality by means of a generalized fractional integral, AIMS Mathematics, 3. (1)(2018), 131 - 147.
H. M. Srivastava and ˇZ. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211. (1)(2009), 198 - 210.
B. Sroysang, More on reverses of Minkowski's integral inequality, Math. Aeterna, 3. (7)(2013), 597 - 600.