A Representation Theorem for Generic Line Arrangements in the Plane

Jump To References Section

Authors

  • Center for Study of Science, Technology and Policy, # 18 & #19, 10th Cross, Mayura Street, Papanna Layout, Nagashettyhalli, RMV II Stage, Bengaluru - 560094 ,IN

DOI:

https://doi.org/10.18311/jims/2020/24873

Keywords:

Ordered Fields, Line Arrangements in the Plane, Combinatorial Cycle Invariants, Elementary Collineation Transformation, Global Cyclicity, Concurrency Arrangement

Abstract

In this article, we prove a representation theorem that any generic line arrangement in the plane over an ordered field can be represented isomorphically by a very generic line arrangement in the sense of C. A. Athanasiadis [2] with a given set of distinct slopes of the same cardinality.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2020-05-15

How to Cite

Anil Kumar, C. (2020). A Representation Theorem for Generic Line Arrangements in the Plane. The Journal of the Indian Mathematical Society, 87(1-2), 96–113. https://doi.org/10.18311/jims/2020/24873
Received 2020-02-07
Accepted 2020-04-10
Published 2020-05-15

 

References

M. Aigner and G. M. Ziegler, Proofs from THE BOOK, Springer, Berlin, 2018. viii+326 pp, ISBN-13: 978-3-662-57264-1; 978-3-662-57265-8, https://doi.org/10.1007/978-3-662-44205-0, MR3823190

C. A. Athanasiadis, The largest intersection lattice of a discriminantal arrangement, Beitr¨age zur Algebra und Geometrie, Contributions to Algebra and Geometry, Vol. 40(2) (1999), 283–289, https://www.emis.de/journals/BAG/vol.40/no.2/1.html, MR1720104

J. E. Goodman and R. Pollack, On the Combinatorial Classification of Non-degenerate Configurations in the Plane, Journal of Combinatorial Theory Series A. 29(2),

(1980), 220–235, ISSN 0097-3165, https://doi.org/10.1016/0097-3165(80)90011-4, MR0583961

B. Gr¨unbaum, Arrangements and Spreads, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 10. American Mathematical Society Providence, R.I., 1972. iv+114 pp, ISBN-13: 978-0-8218-1659-2, https://bookstore.ams.org/cbms-10, MR0307027

B. Gr¨unbaum, Convex Polytopes, Second Edition, Graduate Texts in Mathematics, 221, Springer-Verlag, New York, 2003. xvi+468 pp. ISBN-13: 978-0-387-40409-7, https://doi.org/10.1007/978-1-4613-0019-9, MR1976856

N. Jacobson, Basic Algebra I, Dover Books on Mathematics, Second Edition, 2009, ISBN-13: 978-0-486-47189-1, Unabridged republication originally published by W. H. Freeman and Co., San Francisco, 1985, xviii+499 pp, MR0780184

N. Jacobson, Basic Algebra II, Dover Books on Mathematics, Second Edition, 2009, ISBN- 13: 978-0-486-47187-7, Unabridged republication originally published by W. H. Freeman and Co., San Francisco, 1989, xviii+686 pp, MR1009787

S. Lang, Algebra, Third Edition, Graduate Texts in Mathematics, 211, Springer-Verlag, New York, 2002, xvi+914 pp, ISBN-13: 978-0-387-95385-4, https://doi.org/10.1007/978-1-4613-0041-0, MR1878556

R. P. Stanley, An introduction to hyperplane arrangements in Geometric Combinatorics, 389–496, IAS/Park City Math. Ser., 13, American Mathematical Society, Providence, R.I., 2007, ISBN-13: 978-0-8218-3736-8, https://bookstore.ams.org/pcms-13, MR2383131