On a Generalization of Incomplete Fibonacci Quaternions

Jump To References Section

Authors

  • Department of Mathematics, School of Applied Sciences KIIT, University, Bhubaneswar-751024 ,IN ORCID logo http://orcid.org/0000-0001-7637-8489
  • Department of Mathematics, School of Applied Sciences, KIIT University, Bhubaneswar-751024 ,IN

DOI:

https://doi.org/10.18311/jims/2021/25549

Keywords:

Quaternion, Horadam numbers, Incomplete Horadam numbers, Incomplete Fibonacci quaternions
Primary 11B39, 05A15, Secondary 11R52

Abstract

The aim of this article is to introduce a new class of quater- nions, namely, incomplete Horadam quaternions that are based on in- complete Horadam numbers which generalize the previously introduced incomplete Fibonacci and Lucas quaternions. Further, some identities including summation formulas and generating functions concerning these quaternions are also established.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2021-06-14

How to Cite

Kumar Patel, B., & Behera, N. (2021). On a Generalization of Incomplete Fibonacci Quaternions. The Journal of the Indian Mathematical Society, 88(3-4), 346–354. https://doi.org/10.18311/jims/2021/25549
Received 2020-06-23
Accepted 2023-01-30
Published 2021-06-14

 

References

J. Baez, The octonions, Bull. Amer. Math. Soc., 39. (2002), 145-205.

H. Belbachir and A. Belkhir, On some generalizations of Horadams numbers, Filomat, 32. (2018), 5037-5052.

P. Catarino and H. Campos, Incomplete k-Pell, k-Pell-Lucas and modi ed k-Pell num- bers, Hacet. J. Math. Stat., 46. (2017), 361-372.

G. B. Djordjevic and H. M. Srivastava, Incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers, Math. Comput. Modelling, 42. (2005), 9-10.

T. A. Ell, N. L. Bihan and S. J. Sangwine, Quaternion Fourier transforms for signal and image processing. John Wiley & Sons: 2014.

P. Filipponi, Incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo., 45. (2) (1996), 37-56.

S. Halici and A. Karatas, On a generalization for Fibonacci quaternions, Chaos Solitons Fractals, 98. (2017), 178-182.

A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Amer. Math. Monthly, 70. (1963), 289-291.

C. Kzlates, On quaternions with incomplete Fibonacci and Lucas numbers components, Util. Math., 110. (2019), 263-269.

K. I. Kou and Y. H. Xia, Linear quaternion di erential equations: Basic theory and fundamental results, Stud. Appl. Math., 141. (2018), 3-45.

B. K. Patel, N. Irmak and P. K. Ray, Incomplete balancing and Lucas-balancing numbers, Math. Rep. (Bucur.), 20. (2018), 59-72.

A. Pinter and H. M. Srivastava, Generating functions of the incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo, 48. (2) (1999), 591-596.

H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions. Halsted Press, Ellis Horwood Limited, Chichester, UK, John Wiley & Sons: 1984.

M. Startek, A. W loch and I. W loch, Fibonacci numbers and Lucas numbers in graphs, Discrete Appl. Math., 157. (2009), 864-868.

D. Tasci and M. C. Firengiz, Incomplete Fibonacci and Lucas p-numbers, Math. Comput. Modelling, 52. (2010), 1763-1770.