Landau-Kolmogorov and Gagliardo-Nirenberg Inequalities for Differential Operators in Lorentz Spaces
DOI:
https://doi.org/10.18311/jims/2022/25986Keywords:
Lorentz Spaces, Fourier Transform, Landau-Kolmogorov Inequality, Gagliardo-Nirenberg Inequaly, Generalized Functions.Abstract
In this paper, we establish some Landau-Kolmogorov inequalities and Gagliardo-Nirenberg inequalities for di?erential operators generated by polynomials. We illustrate the relation between ||P(D)f||N? and ||f||N?, ||Dm(P(D)f)||N? as follows
||P(D)f||N? K1(E)||f||N? + K2(E)||Dm(P(D)f)||N?
for all E > 0, where ||.||N? is the norm in Lorentz spaces N?(R). The corresponding inequalities in Lp(Rn) is also obtained.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Vu Nhat Huy, Ngoc Huy Nguyen
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2022-06-15
Published 2022-08-23
References
H. H. Bang, A remark on the Kolmogorov-Stein inequality, J. Math. Analysis Appl., 203 (1996), 861–867. DOI: https://doi.org/10.1006/jmaa.1996.0417
H. H. Bang, On inequalities of Bohr and Bernstein, J. Inequalities and Applications, 7(2002), 349–366. DOI: https://doi.org/10.1155/S1025583402000176
H. H. Bang and V. N. Huy, Some extensions of the Kolmogorov-Stein inequality, Vietnam J. Math., 43(1)(2015), 173–179. DOI: https://doi.org/10.1007/s10013-014-0090-2
S. N. Bernstein, Collected works, Vol. 1. Moscow: Akad Nauk SSSR; 1952 (Russian).
H. Bohr, Ein allgemeiner Satz u¨ber die Integration eines trigonometrischen Polynoms, Prace Matem.-Fiz., 43(1935), 273–288.
Z. Ditzian, A Kolmogorov-type inequality, Mathematical Proceedings of the Cambridge Philosophical Society, 136(2004), 657–663. DOI: https://doi.org/10.1017/S0305004103007448
A. N. Kolmogorov, On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an in?nitive interval, Ucen .Zap. Moskov. Gos. Univ. Mat., 30(1939), 3-13, Amer. Math. Soc. Transl., 1 (4)(1949), 1–19.
E. Landau, Ungleichungen fu¨r zweimal di?erenzierbare Funktionen, Proc. London Math. Soc., 13 (1913), 43–49. DOI: https://doi.org/10.1112/plms/s2-13.1.43
A. A. Markov, On a question by D. I. Mendeleev, Zap. Imp. Akad. Nauk SPb., 62 (1890), 1–24.
V. H. Nguyen. Sharp weighted Sobolev and Gagliardo-Nirenberg inequalities on halfspaces via mass transport and consequences, Proc. Lond. Math. Soc., 111(2015), 127–148. DOI: https://doi.org/10.1112/plms/pdv026
S. M. Nikolskii, Approximation of Functions of Several Variables and Imbedding Theorems, Nauka, Moscow, 1977.
L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa. 13(1959), 115–162.
G. E. Shilov, On inequalities between derivatives, Sb. Nauchn. Stud. Rabot Univ., 1 (1937), 17–27.
M. S. Steigerwalt and A. J. White, Some function spaces related to Lp, Proc. London. Math. Soc., 22(1971), 137–163. DOI: https://doi.org/10.1112/plms/s3-22.1.137
E. M. Stein, Functions of exponential type, Ann. Math., 65 (1957), 582–592. DOI: https://doi.org/10.2307/1970066