Posets Dismantlable by Doubly Irreducibles
DOI:
https://doi.org/10.18311/jims/2021/26053Keywords:
Chain, Lattice, Poset, Doubly irreducible elementAbstract
In this paper, we introduce the concept of a poset dismantlable by doubly irreducibles. We also introduce the operations, `1-sum' and `2-sum' of posets. Using these operations, we obtain the structure theorem for posets dismantlable by doubly irreducibles, which generalizes the structure theorem for dismantlable lattices.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 A. N. Bhavale, B. N. Waphare
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2020-09-16
Published 2021-01-28
References
M. Ajtai, On a class of nite lattices, Period. Math. Hungar., 4 (1973), 217-220.
G. Birkho, Lattice Theory, Amer. Math. Soc. Colloq. Pub., 25, Third Edition, 1979.
G. Brinkmann and B. D. Mckay, Posets on up to 16 points, Order, 19 (2002), 147-179.
A. N. Bhavale and B. N. Waphare, Basic retracts and counting of lattices, Australas. J. Combin., 78 (1) (2020), 73-99.
D. Duus and I. Rival, A structure theory for ordered sets, Discrete Math., 35 (1981), 53-118.
G. Gratzer, General Lattice Theory, Birkhauser Verlag, Second Edition, 1998.
D. J. Klietman and K. J. Winston, The asymptotic number of lattices, Ann. Discrete Math., 6 (1980), 243-249.
D. Kelly and I. Rival, Crown, fences and dismantlable lattices, Canad. J. Math., 26 (5) (1974), 1257-1271.
D. Kelly and I. Rival, Planar lattices, Canad. J. Math., 27 (3) (1975), 636-665.
M. M. Pawar and V. P. Bhamre, Covering energy of some classes of posets, J. Indian Math. Soc., 87 (3-4) (2020), 193-205.
M. M. Pawar and A. S. Wadile, Purely chromatic and hyper chromatic lattices, Asian- Eur. J. Math., https://doi.org/10.1142/S1793557120501508 (2020), 1-11.
M. M. Pawar and B. N. Waphare, Enumeration of nonisomorphic lattices with equal number of elements and edges, Indian J. Math., 45. (2003), 315-323.
I. Rival, Lattices with doubly irreducible elements, Canad. Math. Bull., 17 (1974), 91-95.
I. Rival, A xed point theorem for nite partially ordered sels, J. Combin. Theory Ser. A, 21 (1976), 309-318.
N. K. Thakare, M. M. Pawar and B. N. Waphare, A structure theorem for dismantlable lattices and enumeration, Period. Math. Hungar., 45 (1-2) (2002), 147-160.