2-Absorbing Primary Subsemimodules Over Partial Semirings

Jump To References Section

Authors

  • Department of Basic Science and Humanities, Narasaraopet Engineering College, Narasaraopet - 522601, Andhra Pradesh ,IN
  • Department of Science and Humanities, ANU College of Engineering, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur - 522510, Andhra Pradesh ,IN
  • Department of Basic Engineering, DVR and Dr. HS MIC College of Technology, Kanchikacherla - 521180, Andhra Pradesh ,IN

DOI:

https://doi.org/10.18311/jims/2021/26057

Keywords:

Semimodule, 2-absorbing primary subsemimodule, weakly 2-absorbing primary subsemimodule, commutative partial semiring

Abstract

A partial semiring is a structure possessing an infinitary partial addition and a binary multiplication, subject to a set of axioms. The partial functions under disjoint-domain sums and functional compo- sition is a partial semiring. In this paper we obtain the characteristics of 2-absorbing primary subsemimodules and weakly 2-absorbing primary subsemimodules in partial semirings.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2021-01-28

How to Cite

Ravi Babu, N., Pradeep Kumar, T. V., & Srinivasa Rao, P. V. (2021). 2-Absorbing Primary Subsemimodules Over Partial Semirings. The Journal of the Indian Mathematical Society, 88(1-2), 23–32. https://doi.org/10.18311/jims/2021/26057
Received 2020-09-14
Accepted 2020-09-16
Published 2021-01-28

 

References

G. V. S. Acharyulu, Matrix representable So-rings, Semigroup Forum, Springer-Verlag, 46 (1993), 31-47. (DOI: 10.1007/BF02573542)

D. D. Anderson and A. R. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39(5) (2011), 1646-1672. (DOI: 10.1080/00927871003738998)

M. A. Arbib & E. G. Manes, Partially Additive Categories and Flow-diagram Semantics, J. Algebra, 62. (1980), 203-227.

A. R. Badawi, On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc., 75(3). (2007), 417-429.

A. R. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc., 51(4). (2014), 1163 - 1173. (DOI: 10.4134/BKMS.2014.51.4.1163)

A.R. Badawi, U. Tekir and E. Yetkin, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc., 52(1). (2015), 97-111. (DOI: 10.4134/JKMS.2015.52.1.097)

E. G. Manes and D. B. Benson, The Inverse Semigroup of a Sum-Ordered Partial Semirings, Semigroup Forum, 31. (1985), 129-152. (DOI: 10.1007/BF02572645)

N. Ravi Babu, T. V. Pradeep Kumar and P.V. Srinivasa Rao, 2-absorbing primary ideals of so-rings, Jordan J. Math. Stat., 11(3) (2018), 229-241.

P. V. Srinivasa Rao and M. Siva Mala, Primary subsemimodules of Partial Semimodules, Advances in Algebra, 5(3) (2012), 125-133.

P.V. Srinivasa Rao, Ideal Theory of Sum-ordered Partial Semirings, Doctoral thesis, Acharya Nagarjuna University, 2011.

M. Srinivasa Reddy, V. Amarendra Babu and P. V. Srinivasa Rao, 2-absorbing Subsemimodules of Partial Semimodules, Gen.Math.Notes, 23(2). (2014), 43-50.

M. E. Streenstrup, Sum-ordered Partial Semirings, Doctoral thesis, Graduate school of the University of Massachusetts, 1985.