Approximation of Signals by Harmonic-Euler Triple Product Means

Jump To References Section

Authors

  • Department of Mathematics, National Institute of Technology, Kurukshetra - 136119 ,IN
  • Department of Mathematics, National Institute of Technology, Kurukshetra - 136119 ,IN

DOI:

https://doi.org/10.18311/jims/2021/26084

Keywords:

Degree of Approximation, Harmonic-Euler (H1.Eθ.Eθ) - Summability, Fourier Series, Conjugate Series, Lebesgue integral, Second Mean Value (SMV) Theorem

Abstract

Our paper deals with the approximation of signals by H1.Eθ.Eθ product means of Fourier and its conjugate series. New theorems based on H1.Eθ.Eθ product summability have been established and proved under general conditions. The established theorems extend, generalize and improve various existing results on summability of Fourier series and its conjugate series.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2021-01-28

How to Cite

Sonker, S., & Sangwan, P. (2021). Approximation of Signals by Harmonic-Euler Triple Product Means. The Journal of the Indian Mathematical Society, 88(1-2), 176–186. https://doi.org/10.18311/jims/2021/26084
Received 2020-09-18
Accepted 2023-01-30
Published 2021-01-28

 

References

P. Chandra, On the degree of approximation of a class of functions by means of Fourier series, Acta Math. Hungar., 52 (3-4)(1988), 199 - 205.

X. Z. Krasniqi, On the degree of approximation of a function by (C, 1)(E, q) means of its Fourier-Laguerre series, Int. J. Analysis Appl., 1 (1)(2013), 33 - 39.

X. Z. Krasniqi and Deepmala, On approximation of functions belonging to some classes of functions by (N, pn, qn)(Eθ ) means of conjugate series of its Fourier series, Khayyam J. Math., 6 (1)(2020), 73 - 86.

S. Lal and H. K. Nigam, On almost (N, p, q) summability of conjugate Fourier series, Int. J. Math. Mathematical Sc., 25 (6)(2001), 365 - 372.

S. Lal and J. K. Kushwaha, Degree of approximation of lipschitz function by product summability method, Int. Math. Forum, 4 (43)(2009), 2101 - 2107.

M. L. Mittal and G. Prasad, On a sequence of Fourier coefficients, Indian J. Pure Appl. Math, 23 (3)(1992), 235 - 241.

M. L. Mittal and U. Singh, T· C1 summability of a sequence of Fourier coefficients, Appl. Math. Comput., 204 (2)(2008), 702 - 706.

R. Mohanty and M. Nanda, On the behaviour of Fourier coefficients, Proc. Amer. Math. Soc., 1 (1954), 79 - 84.

M. Mursaleen and A. Alotaibi, Generalized matrix summability of a conjugate derived Fourier series, Jour. Ineq. Appl., (2017) 2017: 273.

K. Qureshi, On the degree of approximation to a function belonging to weighted W(L(r), (t)) Class, Indian J. Pure App. Math, 13 (4)(1982), 471 - 475.

B. N. Sahney and D. S. Goel, On the degree of approximation of continuous functions, Ranchi Univ. Math. J, 4. (1973), 50 - 53.

S. Sonker, Approximation of Functions by means of its Fourier-Laguerre series, Proceeding of ICMS-2014, 1. (1)(2014), 125 - 128.

S. Verma and K. Saxena, A study on (H, 1)(E, q) product summability of Fourier series and its Conjugate series, Math. Theory and Model., 7. (5) (2017).

A. Zygmund, Trigonometric series, Cambridge University Press, 2002.