Ball Convergence of Modified Homeier-Like's Method in Banach Spaces under Weak Continuity Condition

Jump To References Section

Authors

  • ,IN
  • ,IN

DOI:

https://doi.org/10.18311/jims/2022/26313

Keywords:

Banach Space, Lcal Cconvergence, Recurrence Relation, β-Continuity condition.
65D10, 65D99, 65G99, 90C30.

Abstract

The aim of this study is to analyze the local convergence of the multi-step Homeier's-like method for solving nonlinear equations in Banach space. Furthermore, we avoid hypotheses on high order derivatives which limit the applicability of the method. Instead, we only use hypotheses on the first derivative. Thus the applicability of the method has been extended by preserving the order of convergence. The convergence of the solution is proved under the weak hypotheses i.e. $\omega$-continuity condition. Some numerical instances where earlier results cannot be applied to solve equations but our results can be applied are provided to validate the theoretical contribution.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2022-08-23

How to Cite

Gupta, N., & Jaiswal, J. P. (2022). Ball Convergence of Modified Homeier-Like’s Method in Banach Spaces under Weak Continuity Condition. The Journal of the Indian Mathematical Society, 89(3-4), 305–316. https://doi.org/10.18311/jims/2022/26313
Received 2020-10-26
Accepted 2022-01-07
Published 2022-08-23

 

References

I. K. Argyros, Convergence and applications of Newton-type iterations, Springer, New York, 2008,

I. K. Argyros and S. George, Local convergence of two competing third order methods in Banach spaces, Appl. Math., 41 (2016), 341–350. DOI: https://doi.org/10.4064/am41-4-5

I. K. Argyros and S. George, Increasing the order of convergence for iterative methods in Banach space under weak conditions, Malaya J. Matematik, 6(2) (2018), 396–401. DOI: https://doi.org/10.26637/MJM0602/0016

I. K. Argyros, D. Gonzalez and S. K. Khattri, Local convergence of a one parameter fourth-order Jarratt-type method in Banach spaces, Comment. Math. Univ. Carolin., 57 (2016), 289–300. DOI: https://doi.org/10.14712/1213-7243.2015.171

I. K. Argyros and S. Hilout, Computational Methods in Nonlinear Analysis, World Scienti?c Publishing Company, New Jersey, 2013. DOI: https://doi.org/10.1142/8475

I. K. Argyros and S. K. Khattri, Local convergence for a family of third order methods in Banach spaces, Punjab Univ. J. Math., 46 (2016), 52–63.

A. Cordero, J. A. Ezquerro, M. A. Hern´andez, and J. Torregrosa, On the local convergence of a ?fth-order iterative method in Banach spaces, Appl. Math. Comput, 251 (2015), 396–403. DOI: https://doi.org/10.1016/j.amc.2014.11.084

H. H. H. Homeier, A modi?ed Newton method with cubic convergence: the multivariable case, J. Comput. Appl. Math., 169 (2004), 161–169 DOI: https://doi.org/10.1016/j.cam.2003.12.041

L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.

E. Mart´?nez, S. Singh, J. L. Hueso and D. K. Gupta, Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces, Appl. Math. Comput., 281 (2016), 252–265. DOI: https://doi.org/10.1016/j.amc.2016.01.036

B. Panday and J. P. Jaiswal, On the local convergence of modi?ed Homeier-like method in Banach spaces, Num. Anal. Appl., 21(4) (2018), 419–433. DOI: https://doi.org/10.1134/S1995423918040067

L. B. Rall, Computational Solution of Nonlinear Operator Equations, Robert E Krieger, New York, 1979.

J. R. Sharma and I. K. Argyros, Local convergence of a Newton-Traub composition in Banach spaces, SeMA, 75(1) (2017), 57–68. DOI: https://doi.org/10.1007/s40324-017-0113-5

J. R. Sharma and P. Gupta, An efficient fifth order method for solving systems of nonlinear equations, Comput. Math. Appl., 67(3) (2014), 591–601. DOI: https://doi.org/10.1016/j.camwa.2013.12.004

J. F. Traub, Iterative Methods for the Solution of Equations, Chelsea Publishing Company, New York, 1977.