A Lusternik-Schnirelmann Type Theorem for C1-Frechet Manifolds
DOI:
https://doi.org/10.18311/jims/2021/27836Keywords:
Lusternik-Schnirelmann Theorem, Frechet Finsler Manifolds, Deformation LemmaAbstract
We prove a Lusternik-Schnirelmann type theorem for a C1- function φ : M → R, where M is a connected infinite dimensional Frechet manifold of class C1. To this end, in this context we prove the so-called Deformation Lemma and by using it we derive the result generalizing the Minimax Principle.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Kaveh Eftekharinasab, Ivan Lastivka
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2021-05-19
Published 2021-06-14
References
F. E. Browder, Nonlinear Eigenvalue Problems and Group Invariance, In: Browder F. E. (eds) Functional Analysis and Related Fields (1970), 1 - 58.
N. Ghoussoub, A Min-Max principle with a relaxed boundary condition, Proc. Amer. Math. Soc., 117 (2)(1993), 439 - 447.
J. Milnor, Morse theory, Princeton University Press, 1963.
K-H. Neeb, Towards a Lie theory for locally convex groups, Japanese. J. Math., 1 (2006), 291 - 468.
K-H. Neeb, Borel-Weil theory for loop groups, In: Huckleberry A., Wurzbacher T. (eds) In nite dimensional Kahler manifolds. DMV Seminar Band, 31 (2001), 179 - 229.
R. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology, 5 (2) (1966), 115 - 132.
R. Palais, Morse theory on Hilbert manifolds, Topology, 2 (4)(1966), 299 - 340.
R. Palais, The Morse lemma for Banach spaces, Bull. Amer. Math. Soc., 75 (5) (1969), 968 - 972.
R. Palais, Foundations of Global Non-Linear Analysis, Watham, Mass.: Dept. of Mathematics, Brandeis University, 1966.
A. Szulkin, Ljusternik-Schnirelmann theory on C1-manifolds, Annales de l'I. H. P., section C, 5 (2)(1988), 119 - 139
R. S. Sadyrkhanov, On in nite dimensional features of proper and closed mappings, Proc. Amer. Math. Soc., 98 (4)(1986), 643 - 648.
S. Smale, Morse theory and a non-linear generalization of the Dirichlet problem, Ann. Math., 80 (2)(1964), 382 - 396.
T. N. Subramaniam, Slices for the actions of smooth tame Lie groups, PhD thesis, Brandeis University, 1984.
A. J. Tromba, A general approach to Morse theory, J. Di er. Geom., 12 (1)(1977), 47 - 85.
K. Uhlenbeck, Morse theory on Banach manifolds, J. Funct. Anal, 10 (4)(1972), 430 - 445.