Local Nullstellensatz over Commutative Ground Rings
DOI:
https://doi.org/10.18311/jims/2023/28057Keywords:
G-Ideal, Nullstellensatz, Maximal Ideal, Polynomial Ring.Abstract
It is shown that a local Nullstellensatz holds over an arbitrary commutative ring A (with identity 1 ≠ 0); specifically, if B = A[x1, . . . , xn] is a finitely generated extension ring of A and N is a maximal ideal in B, then NBN = (N ∩ A, x1 − c1, . . . , xn − cn)BN for some c1, . . . , cn ∈ BN .
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Paula Kemp, Louis J. Ratliff, Kishor Shah
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2021-12-26
Published 2023-03-24
References
D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, 1995. DOI: https://doi.org/10.1007/978-1-4612-5350-1
I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
P. Kemp, L. J. Ratliff, Jr., and K. Shah, Depth one homogeneous prime ideals in polynomial rings over a field, Journal of Indian Math. Soc. (accepted).
M. Nagata, Local Rings, Interscience, John Wiley, New York, 1962.
O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, D. Van Nostrand, New York, 1958.
O. Zariski and P. Samuel, Commutative Algebra, Vol. 2, D. Van Nostrand, New York, 1960. DOI: https://doi.org/10.1007/978-3-662-29244-0