Local Nullstellensatz over Commutative Ground Rings

Jump To References Section

Authors

  • Department of Mathematics, Missouri State University, Springfield, Missouri 65897 ,US
  • Department of Mathematics, University of California, Riverside, California 92521-0135 ,US
  • Department of Mathematics, Missouri State University, Springfield, Missouri 65897 ,US

DOI:

https://doi.org/10.18311/jims/2023/28057

Keywords:

G-Ideal, Nullstellensatz, Maximal Ideal, Polynomial Ring.
2010 Mathematics Subject Classification, Primary, 13B25, 13F20, Secondary, 13A15.

Abstract

It is shown that a local Nullstellensatz holds over an arbitrary commutative ring A (with identity 1 ≠ 0); specifically, if B = A[x1, . . . , xn] is a finitely generated extension ring of A and N is a maximal ideal in B, then NBN = (N ∩ A, x1 − c1, . . . , xn − cn)BN for some c1, . . . , cn ∈ BN .

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2023-03-24

How to Cite

Kemp, P., Ratliff, L. J., & Shah, K. (2023). Local Nullstellensatz over Commutative Ground Rings. The Journal of the Indian Mathematical Society, 90(1-2), 149–158. https://doi.org/10.18311/jims/2023/28057
Received 2021-07-01
Accepted 2021-12-26
Published 2023-03-24

 

References

D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, 1995. DOI: https://doi.org/10.1007/978-1-4612-5350-1

I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.

P. Kemp, L. J. Ratliff, Jr., and K. Shah, Depth one homogeneous prime ideals in polynomial rings over a field, Journal of Indian Math. Soc. (accepted).

M. Nagata, Local Rings, Interscience, John Wiley, New York, 1962.

O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, D. Van Nostrand, New York, 1958.

O. Zariski and P. Samuel, Commutative Algebra, Vol. 2, D. Van Nostrand, New York, 1960. DOI: https://doi.org/10.1007/978-3-662-29244-0