Some Results Concerning Sendov Conjecture
DOI:
https://doi.org/10.18311/jims/2023/28314Keywords:
Polynomial, Disk, Zeros, Critical Point, Transformation.Abstract
Let P(z) be a complex polynomial of degree n having all its zeros in |z| ≤ 1. Then the Sendov’s Conjecture states that there is always a critical point of P(z) in |z − a| ≤ 1, where a is any zero of P(z). In this paper, we verify the Sendov’s Conjecture for some special cases. The case where a is the root of pth smallest modulus is also investigated.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mohammad Ibrahim Mir, Ishfaq Nazir, Irfan Ahmad Wani
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2022-04-15
Published 2023-03-24
References
B. Bojanov, Q. Rahman and J. Szynal, On a conjecture of Sendov about the critical points of a polynomial, Mathematische Z., 190 (1985), 281–285. DOI: https://doi.org/10.1007/BF01160464
J. E. Brown and G. Xiang, Proof of Sendov conjecture for polynomials of degree at most eight, J. Math. Anal. Appl., 2 (1999), 272–292. DOI: https://doi.org/10.1006/jmaa.1999.6267
G. L. Cohen and G. H. Smith, A Proof of Iliev’s conjecture for polynomials with three zeros, Amer. Math. Monthly, 95 (1988), 734–737. DOI: https://doi.org/10.1080/00029890.1988.11972079
W. K. Hayman, Research Problems in Function Theory, Althlone Press, London, 1967.
Q. I. Rahman and G. Schmeisser. Analytic Theory of Polynomials, Oxford University Press, 2002.
Z. Rubenstein, On a Problem of Ilye, Pacific J. Math., 26 (1968), 159–161. DOI: https://doi.org/10.2140/pjm.1968.26.159
Bl. Sendov, Generalization of a Conjecture in the geometry of plynomials, Serdica Math. J. 28 (2002), 283–304.
T. Sheil–Small, Complex Polynomials, Cambridge University Press, 2002. DOI: https://doi.org/10.1017/CBO9780511543074