A New Notion of Paranorm Intuitionistic Fuzzy Zweier I3-Convergent Triple Sequence Spaces
DOI:
https://doi.org/10.18311/jims/2023/28346Keywords:
Ideal Spaces, Triple I3-Sequence, Intuitionistic Fuzzy Normed Spaces.Abstract
In this paper, we define and introduce the notion of paranorm intuitionistic fuzzy Zweier I3-convergent triple sequence spaces ZI3(μ,υ) (p) and ZIO3(μ,υ) (p) for p = (pnmj ) a triple sequence of positive real numbers. Besides, the fuzzy topology on these spaces is studied.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Carlos Granados
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2022-02-22
Published 2023-03-24
References
L. C. Barros, R. C. Bassanezi, P. A. Tonelli, Fuzzy modelling in population dynamics, Ecol. Model., vol. 128 (2000), 27-33. doi: 10.1016/S0304-3800(99)00223-9 DOI: https://doi.org/10.1016/S0304-3800(99)00223-9
F. Basar, Summability Theory and its Applications, Bentham Science Publishers, e-books, Monograph, Istanbul, 2012. DOI: https://doi.org/10.2174/97816080545231120101
F. Basar, B. Altay, On the spaces of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., vol. 55 (2003), 136–147. doi: 10.1023/A:1025080820961 DOI: https://doi.org/10.1023/A:1025080820961
P. Das, P. Kostyrko, W. Wilczy´nski and P. Malik, I and I∗-convergence of double sequences, Mathematica Slovaca, vol. 58(5) (2008), 605–620. doi: 10.2478/s12175-008-0096-x DOI: https://doi.org/10.2478/s12175-008-0096-x
A. L. Fradkov, R. J. Evans, Control of chaos: Methods of applications in engineering, Annual Reviews in Control, vol. 29 (2005), 33-56. doi: 10.1016/j.arcontrol.2005.01.001 DOI: https://doi.org/10.1016/j.arcontrol.2005.01.001
R. Giles, A computer program for fuzzy reasoning, Fuzzy Sets Syst., vol. 4(3) (1980), 221–234. doi: 10.1016/0165-0114(80)90012-3 DOI: https://doi.org/10.1016/0165-0114(80)90012-3
C. Granados, A. Dhital, Statistical convergence of double sequences in neutrosophic normed spaces, Neutrosophic Sets and Systems 42 (2021), 334-344. doi: 10.5281/zenodo.4718194
C. Granados, New notions of triple sequences on ideal spaces in metric spaces, Advances in the Theory of Nonlinear Analysis and its Applications 5(3) (2021), 363-368. doi: 10.31197/atnaa.846717 DOI: https://doi.org/10.31197/atnaa.846717
C. Granados, A generalization of the strongly Cesaro ideal convergence through double sequence spaces, International Journal of Applied Mathematics 34(3) (2021), 525-533. doi: 10.12732/ijam.v34i3.8 DOI: https://doi.org/10.12732/ijam.v34i3.8
L. Hong, J. Q. Sun, Bifurcations of fuzzy non-linear dynamical systems, Commun. Nonlinear Sci. Numer. Simul, vol. 1 (2006), 1–12. doi: 10.1016/j.cnsns.2004.11.001 DOI: https://doi.org/10.1016/j.cnsns.2004.11.001
U. Kadak, F. Basar, Power series with real or fuzzy coefficients, Filomat, vol. 26(3) (2012), 519–528. doi: 10.2298/FIL1203519K DOI: https://doi.org/10.2298/FIL1203519K
V. A. Khan, Yasmeen, H. Fatima and H. Altaf, A new type of paranorm intuitionistic fuzzy Zweier I-convergent triple sequence spaces, Filomat, vol. 33(5) (2019), 1279–1286. doi: 10.2298/FIL1905279K DOI: https://doi.org/10.2298/FIL1905279K
V. A. Khan, Yasmeen, H. Fatima and A. Ahamd, Intuitionistic fuzzy Zweier I - convergent sequence spaces defined by Orlicz function, Cogent Mathematics, vol. 3 (2016), 469–478. doi: 10.1080/23311835.2016.1235320 DOI: https://doi.org/10.1080/23311835.2016.1235320
I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford, vol. 18 (1967), 345–355. doi: 10.1093/qmath/18.1.345 DOI: https://doi.org/10.1093/qmath/18.1.345
M. Mursaleen, Q. M. D. Lohni, Intuitionistic fuzzy 2-normed space and some related concepts, Chaos, Solitons and Fractals, vol. 42(1) (2009), 224–234. doi: 10.1016/j.chaos.2008.11.006 DOI: https://doi.org/10.1016/j.chaos.2008.11.006
R. Saadati, J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals, vol. 27(2) (2006), 331–344. doi: 10.1016/j.chaos.2005.03.019 DOI: https://doi.org/10.1016/j.chaos.2005.03.019
A. Sahiner and B. C. Tripathy, Some I-related properties of triple sequences, Selcuk J. Appl. Math., vol. 9(2) (2008), 9–18.
M. Sengonul, On the Zweier sequence space, Demonstratio Math., vol. 40 (2007), 181–196. doi: 10.1515/dema-2007-0119 DOI: https://doi.org/10.1515/dema-2007-0119
L. A. Zadeh, Fuzzy sets, Inform. Control, vol. 8(3) (1965), 338–353. doi: 10.1016/S0019-9958(65)90241-X DOI: https://doi.org/10.1016/S0019-9958(65)90241-X