A New Notion of Paranorm Intuitionistic Fuzzy Zweier I3-Convergent Triple Sequence Spaces

Jump To References Section

Authors

  • Universidad de Antioquia ,CO

DOI:

https://doi.org/10.18311/jims/2023/28346

Keywords:

Ideal Spaces, Triple I3-Sequence, Intuitionistic Fuzzy Normed Spaces.

Abstract

In this paper, we define and introduce the notion of paranorm intuitionistic fuzzy Zweier I3-convergent triple sequence spaces ZI3(μ,υ) (p) and ZIO3(μ,υ) (p) for p = (pnmj ) a triple sequence of positive real numbers. Besides, the fuzzy topology on these spaces is studied.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2023-03-24

How to Cite

Granados, C. (2023). A New Notion of Paranorm Intuitionistic Fuzzy Zweier I<sub>3</sub>-Convergent Triple Sequence Spaces. The Journal of the Indian Mathematical Society, 90(1-2), 165–174. https://doi.org/10.18311/jims/2023/28346
Received 2021-08-02
Accepted 2022-02-22
Published 2023-03-24

 

References

L. C. Barros, R. C. Bassanezi, P. A. Tonelli, Fuzzy modelling in population dynamics, Ecol. Model., vol. 128 (2000), 27-33. doi: 10.1016/S0304-3800(99)00223-9 DOI: https://doi.org/10.1016/S0304-3800(99)00223-9

F. Basar, Summability Theory and its Applications, Bentham Science Publishers, e-books, Monograph, Istanbul, 2012. DOI: https://doi.org/10.2174/97816080545231120101

F. Basar, B. Altay, On the spaces of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., vol. 55 (2003), 136–147. doi: 10.1023/A:1025080820961 DOI: https://doi.org/10.1023/A:1025080820961

P. Das, P. Kostyrko, W. Wilczy´nski and P. Malik, I and I-convergence of double sequences, Mathematica Slovaca, vol. 58(5) (2008), 605–620. doi: 10.2478/s12175-008-0096-x DOI: https://doi.org/10.2478/s12175-008-0096-x

A. L. Fradkov, R. J. Evans, Control of chaos: Methods of applications in engineering, Annual Reviews in Control, vol. 29 (2005), 33-56. doi: 10.1016/j.arcontrol.2005.01.001 DOI: https://doi.org/10.1016/j.arcontrol.2005.01.001

R. Giles, A computer program for fuzzy reasoning, Fuzzy Sets Syst., vol. 4(3) (1980), 221–234. doi: 10.1016/0165-0114(80)90012-3 DOI: https://doi.org/10.1016/0165-0114(80)90012-3

C. Granados, A. Dhital, Statistical convergence of double sequences in neutrosophic normed spaces, Neutrosophic Sets and Systems 42 (2021), 334-344. doi: 10.5281/zenodo.4718194

C. Granados, New notions of triple sequences on ideal spaces in metric spaces, Advances in the Theory of Nonlinear Analysis and its Applications 5(3) (2021), 363-368. doi: 10.31197/atnaa.846717 DOI: https://doi.org/10.31197/atnaa.846717

C. Granados, A generalization of the strongly Cesaro ideal convergence through double sequence spaces, International Journal of Applied Mathematics 34(3) (2021), 525-533. doi: 10.12732/ijam.v34i3.8 DOI: https://doi.org/10.12732/ijam.v34i3.8

L. Hong, J. Q. Sun, Bifurcations of fuzzy non-linear dynamical systems, Commun. Nonlinear Sci. Numer. Simul, vol. 1 (2006), 1–12. doi: 10.1016/j.cnsns.2004.11.001 DOI: https://doi.org/10.1016/j.cnsns.2004.11.001

U. Kadak, F. Basar, Power series with real or fuzzy coefficients, Filomat, vol. 26(3) (2012), 519–528. doi: 10.2298/FIL1203519K DOI: https://doi.org/10.2298/FIL1203519K

V. A. Khan, Yasmeen, H. Fatima and H. Altaf, A new type of paranorm intuitionistic fuzzy Zweier I-convergent triple sequence spaces, Filomat, vol. 33(5) (2019), 1279–1286. doi: 10.2298/FIL1905279K DOI: https://doi.org/10.2298/FIL1905279K

V. A. Khan, Yasmeen, H. Fatima and A. Ahamd, Intuitionistic fuzzy Zweier I - convergent sequence spaces defined by Orlicz function, Cogent Mathematics, vol. 3 (2016), 469–478. doi: 10.1080/23311835.2016.1235320 DOI: https://doi.org/10.1080/23311835.2016.1235320

I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford, vol. 18 (1967), 345–355. doi: 10.1093/qmath/18.1.345 DOI: https://doi.org/10.1093/qmath/18.1.345

M. Mursaleen, Q. M. D. Lohni, Intuitionistic fuzzy 2-normed space and some related concepts, Chaos, Solitons and Fractals, vol. 42(1) (2009), 224–234. doi: 10.1016/j.chaos.2008.11.006 DOI: https://doi.org/10.1016/j.chaos.2008.11.006

R. Saadati, J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals, vol. 27(2) (2006), 331–344. doi: 10.1016/j.chaos.2005.03.019 DOI: https://doi.org/10.1016/j.chaos.2005.03.019

A. Sahiner and B. C. Tripathy, Some I-related properties of triple sequences, Selcuk J. Appl. Math., vol. 9(2) (2008), 9–18.

M. Sengonul, On the Zweier sequence space, Demonstratio Math., vol. 40 (2007), 181–196. doi: 10.1515/dema-2007-0119 DOI: https://doi.org/10.1515/dema-2007-0119

L. A. Zadeh, Fuzzy sets, Inform. Control, vol. 8(3) (1965), 338–353. doi: 10.1016/S0019-9958(65)90241-X DOI: https://doi.org/10.1016/S0019-9958(65)90241-X