Mehler-Fock, Legendre Integral Transforms with Applications
DOI:
https://doi.org/10.18311/jims/2022/28908Keywords:
Mehler-Fock Transform, Legendre Transform, Modi?ed Bessel’s Functions, Legendre Di?erential Equation, Associate Legendre Function, Gamma Function.Abstract
In this paper we study some properties of the Mehler-Fock and Legendre transforms. Certain integrals involving associated Legendre function, Gamma function and modi?ed Bessel’s function are evaluated. Constructive examples are also provided.Downloads
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 A. Aghili
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2022-01-22
Published 2022-08-23
References
A. Aghili, Solution to time fractional non-homogeneous first order PDE with non- constant coefficients, Tbilisi Math. J., 12(4) (2019), 149-155. DOI: https://doi.org/10.32513/tbilisi/1578020577
A. Aghili, Special functions, integral transforms with applications, Tbilisi Math. J. 12 (1) (2019), 33-44. DOI: https://doi.org/10.32513/tbilisi/1553565624
A. Aghili, Complete solution for the time fractional diffusion problem with mixed boundary conditions by operational method, Applied Mathematics and Non-linear Sciences, April (2020) (aop) 1-12. DOI: https://doi.org/10.2478/amns.2020.2.00002
A. Apelblat, Laplace transforms and their applications, Nova science publishers, Inc, New York, 2012.
H. J. Glaeske, A. P. Prudnikov and R. A. Skornik, Operational calculus and related topics, Chapman and Hall / CRC 2006. DOI: https://doi.org/10.1201/9781420011494
I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series and products, Academic Press, NY, 1980.
N. N. Lebedev, Special functions and their applications, Prentice-Hall, INC., 1972.
B. Patra, An introduction to integral transforms, CRC press, 2016.
I. Podlubny, Fractional differential equation, Academic Press, New york, 1999.
A. P. Prudnikov, Yu. Brychkov, and O. J. Marichev, Integral and series, Gordon and Breach Science Publishers, New York, Vol. I, Elementary Functions, 1986; Vol. II, Special functions, 1986; Vol. III, More special functions, 1989; Vol. IV, Direct Laplace transforms, 1992; Vol. V, Inverse Laplace Transforms, 1992.
S. N. Samaddar, Scattering of cylindrical waves by a spherical object, Proc. 1971 International Sympos. Antennas and Propagation, Sendai, Japan, Sept. 1-3, (1971), 195.