Some Results Involving the pRq(α,β,z) Function
DOI:
https://doi.org/10.18311/jims/2023/29001Keywords:
Gamma Function, Beta Function, Hermite Polynomial, Legendre Polynomial, Legendre Function, Jacobi Polynomial, Galue Type Struve Function(GTSF).Abstract
The main aim of this paper is to discuss some classical properties of the pRq(α, β; z) function such as integrals involving pRq(α, β; z) function and its product with some algebraic functions and higher Tanscendental function viz, Hermite polynomial, Legendre polynomial, Legendre function, Jacobi polynomial, Galue type Struve function, six summation formulas of pRq(α, β; z) function and relation betweenpRq(α, β; z) and pRq(α, β;- z) functions.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Yogesh M. Thakkar, Ajay Shukla
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2022-03-28
Published 2023-07-12
References
G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, UK, 2001.
R. Desai, A. K. Shukla, Some results on function pRq(α, β; z), J. Math. Anal. Appl., 448 (1)(2017), 187 – 197.
R. Desai, A. K. Shukla, Note on the pRq(α, β; z) function, J. Indian Math. Soc., 88 (3-4)(2021), 288 – 297.
A. Erd´elyi, H. Bateman, Higher transcendental functions. Vol. I, McGraw-Hill, New York, 1953.
S. Haq, A. H. Khan, K. S. Nisar, A Study of New Class of Integrals Associated with Generalized Struve Function and Polynomials, Commun. Korean Math. Soc., 34 (1)(2019), 169 – 183.
R. B. Paris, A Kummer-type Transformation for a2F2 Hypergeometric Function, J. Comput. Appl. Math., 173 (2)(2005), 379 – 382.
E. D. Rainville, Special Functions, Mcmillan, New York, 1960.
H. M. Srivastava, Certain Summation Formulas Involving Generalized Hypergeometric Function, Comment Math. Univ. St. Pauli, XXI-2 (1972), 25 – 34.