Module Basis for Generalized Spline Modules

Jump To References Section

Authors

  • Department of Mathematics, Navrachana University, Vadodara - 391410 ,IN
  • Department of Mathematics, Navrachana University, Vadodara - 391410 ,IN

DOI:

https://doi.org/10.18311/jims/2022/29295

Keywords:

Generalized spline modules, Dutch Windmill graph, isomorphic graphs

Abstract

Let G = (V,E) be a graph of order n. Let R be a commutative ring and I denote the set of all ideals of R. Let ? : E ? I be an edge labeling. A generalized spline of (G, ?) is a vertex labeling F : V ? R such that for each edge uv, F(u) ? F(v) ? ?(uv). The set R(G,) of all generalized splines of (G, ?) is an R-module. In this paper we determine conditions for a subset of R(G,?) to form a basis of R(G,?) for some classes of graphs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2022-01-27

How to Cite

Madhavi Duggaraju, R., & Mazumdar, L. (2022). Module Basis for Generalized Spline Modules. The Journal of the Indian Mathematical Society, 89(1-2), 32–43. https://doi.org/10.18311/jims/2022/29295
Received 2022-01-10
Accepted 2023-01-30
Published 2022-01-27

 

References

S. Altinok and S. Sarioglan, Basis criteria for generalized spline modules via determinant, Discrete Math., 344 (2021), 112223. DOI: https://doi.org/10.1016/j.disc.2020.112223

S. Altinok and S. Sarioglan, Flow-up bases for generalized spline modules on arbitrary graphs, J. Algebra Appl. 20(10), 2150180 (2021). DOI: https://doi.org/10.1142/S0219498821501802

M. Atiyah and I. MacDonald, Introduction To Commutative Algebra, Addison-Wesley, Reading, Mass. 1969.

L. J. Billera and L. L. Rose, A dimension series for multivariate splines, Discrete Comput. Geom., 6(2) (1991), 107–128. DOI: https://doi.org/10.1007/BF02574678

N. Bowden and J. Tymoczko, Splines mod m, ArXiv e-prints (2015).

J. P. Dalbec and H. Schenck, On a conjecture of rose, J. Pure Appl. Algebra, 165 (2)(2001), 151–154. DOI: https://doi.org/10.1016/S0022-4049(00)00175-4

M. R. DiPasquale, Shellability and freeness of continuous splines, J. Pure Appl. Algebra, 216(11) (2012), 2519-2523. DOI: https://doi.org/10.1016/j.jpaa.2012.03.010

E. Gjoni, Basis criteria for n-cycle integer splines, Bard College Senior Projects Spring 2015, Bard College, NY 2015.

E. Estrada, When local and global clustering of networks diverge, Linear Algebra Appl., 488 (2016), 249–263. DOI: https://doi.org/10.1016/j.laa.2015.09.048

S. Gilbert, S. Polster and J. Tymoczko, Generalized splines on arbitrary graphs, Pac. J. Appl. Math., 281 (2016), 333–364 DOI: https://doi.org/10.2140/pjm.2016.281.333

R. Haas, Module and vector space bases for spline spaces, J. Approx. Theory, 65(1) (1991), 73-89. DOI: https://doi.org/10.1016/0021-9045(91)90113-O

M. Handschy, J. Melnick and S. Reinders, Integer Generalized Splines on Cycles, arXiv:Combinatrics (2014).

F. Harary. Graph Theory, Addison-Wesley, Reading, MA. 1984.

E. R. Mahdavi, Integer generalized splines on the diamond graph, Bard College Senior Projects Spring 2016, Bard College, NY. 2016.

L. L. Rose, Graphs, syzygies and multivariate splines, Discrete Comput. Geom., 32(4) (2004), 623-637. DOI: https://doi.org/10.1007/s00454-004-1141-3