Unique Range Set of a Meromorphic Function And Its Linear Difference Polynomial
DOI:
https://doi.org/10.18311/jims/2022/29306Keywords:
Meromorphic function, Linear difference polynomial, Finite order, Unique range set, Nevanlinna theoryAbstract
In this work, we generalize the estimate of cardinality of a unique range set of meromorphic functions (URSM) and as an application we obtain the cardinality of URSM of a meromorphic function f(z) of finite order and its linear difference polynomial L(z, f). As a consequences we deduce several uniqueness of f(z) and L(z, f) sharing a set.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Renukadevi S. Dyavanal, Madhura M. Mathai, Ashwini M. Hattikal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-01-30
Published 2022-01-27
References
A. Banerjee and B. Chakraborty, Further results on the uniqueness of meromorphic functions and their derivative counterpart sharing one or two sets, arXiv:1608.02539v1[math.CV](2016).
W. Bergweiler and J. K. Langley, Zeros of differences of meromorphic functions, Math. Proc. Camb. Phil. Soc., 142 (2007), 133–147. DOI: https://doi.org/10.1017/S0305004106009777
S. S. Bhoosnurmath and S. R. Kabbur, Value distribution and uniqueness theorems for difference of entire and meromorphic functions, Int. J. Anal. Appl., 2 (2) (2013), 124–136.
Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of f(z + n) and the difference equations in the complex plane, Ramanunjan J., 16 (2008), 105–129. DOI: https://doi.org/10.1007/s11139-007-9101-1
B. Chen and Z. Chen, Meromorphic functions sharing two sets with its difference operator, Bull. Malays. Math. Sci. Soc., Second Series, 35(3)) (2012), 765–774.
G. Frank and M. Reinder, A unique range set for meromorphic functions with 11 elements, Comp. Vari. Theory Appl., 37 (1998), 185–193. DOI: https://doi.org/10.1080/17476939808815132
R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Anal. Acad. Sci. Fenn. Math., 31 (2), (2006), 463–478.
I. Lahiri and A. Banerjee, Weighted sharing of two sets, Kyungpook Math. J., 46 (2006), 79–87.
P. Li and C. C. Yang, Some further results on the unique range sets of meromorphic functions, Kodai Math. J., 18 (1995), 437–450. DOI: https://doi.org/10.2996/kmj/1138043482
S. Li and B. Q. Chen, Unicity of meromorphic functions sharing sets with their linear difference polynomials, Abstr. Appl. Anal., Vol. 2014, Article ID 894968, 7 pages. DOI: https://doi.org/10.1155/2014/894968
X. Luo and W. C. Lin, Value sharing results for shifts of meromorphic functions, J. Math. Anal. Appl., 377 (2011), 441–449. DOI: https://doi.org/10.1016/j.jmaa.2010.10.055
C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic, Dordrecht 2003. DOI: https://doi.org/10.1007/978-94-017-3626-8
H. X. Yi, Unicity theorems for entire functions, Kodai Math. J., 17 (1994), 133–141. DOI: https://doi.org/10.2996/kmj/1138039903
H. X. Yi and L. Z. Yang, Meromorphic functions that share two sets, Kodai Math. J., 20 (1997), 127–134. DOI: https://doi.org/10.2996/kmj/1138043751
J. Zhang, Value distribution and shared sets of differences of meromorphic functions, J. Math. Anal. Appl., 367 (2) (2010), 4010–408. DOI: https://doi.org/10.1016/j.jmaa.2010.01.038