An Asymptotic Expansion of Continuous Wavelet Transform for Small Dilation Parameter
DOI:
https://doi.org/10.18311/jims/2022/29311Keywords:
Asymptotic expansion, Wavelet transform, Fourier transform, Mellin transformAbstract
In this paper, we derive asymptotic expansion of the wavelet transform for small values of the dilation parameter a by using Lopez and Pagola technique. Asymptotic expansion of Morlet wavelet, Mexican Hat wavelet and Haar wavelet transform are obtained as a special cases.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ashish Pathak, Prabhat Yadav, M. M. Dixit
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-01-30
Published 2022-01-27
References
A. Erdlyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms, 1. McGraw-Hill, New York, 1954.
Jos L. Lopez and Pedro Pagola, Asymptotic expansions of Mellin convolution integrals: An oscillatory case, J. Computational Appl. Math., 233 (2010), 1562-1569. DOI: https://doi.org/10.1016/j.cam.2009.02.071
R. S. Pathak, Wavelet Transforms, World scientific, 2009. DOI: https://doi.org/10.1080/10652460802047809
R. S. Pathak and Ashish Pathak, Asymptotic expansion of Wavelet Transform for small value a, The Wavelet Transforms, World Scientific, (2009), 164–170. DOI: https://doi.org/10.2991/978-94-91216-24-4_10
R. S. Pathak and Ashish Pathak, Asymptotic expansion of Wavelet Transform with error term, The Wavelet Transforms, World Scientific, (2009), 154–164. DOI: https://doi.org/10.2991/978-94-91216-24-4_9
R. S. Pathak and Ashish Pathak, Asymptotic Expansions of the Wavelet Transform for Large and Small Values of b, Inter. J. Math. Math. Sc., Vol. 2009, 13 pages. DOI: https://doi.org/10.1155/2009/270492
Ashish Pathak, Prabhat Yadav and M. M. Dixit, An asymptotic expansion of continuous wavelet transform for large dilation parameter, Bol. Soc. Parana. Mat. 3 (36) (2018), 27-39. DOI: https://doi.org/10.5269/bspm.v36i3.31221
R.Wong, Explicit error terms for asymptotic expansion of Mellin convolutions, J. Math. Anal. Appl. 72 (1979), 740–756. DOI: https://doi.org/10.1016/0022-247X(79)90261-0
R. Wong, Asymptotic Approximations of Integrals, Academic Press, New York, 1989.