Three-way Combinatorial Interpretations of Rogers–Ramanujan Identities
DOI:
https://doi.org/10.18311/jims/2022/29312Keywords:
Partitions, n–color partitions, mock theta functions, Rogers–Ramanujan identitiesAbstract
Combinatorial interpretations of the Rogers–Ramanujan identities are provided in terms of n–color partitions. Further interpretations in terms of ordinary partitions are obtained by using bijective maps. These results lead to the interpretations of two fifth order mock theta functions by attaching weights.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 S. Sharma, M. Rana
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-01-30
Published 2022-01-27
References
A. K. Agarwal, Rogers-Ramanujan identities for n–color partitions, J. Number Theory, 28(3) (1988), 299–305. DOI: https://doi.org/10.1016/0022-314X(88)90045-5
A.K. Agarwal, Lattice paths and n–color partitions, Util. Math., 53 (1998), 71–80.
A. K. Agarwal and G. E. Andrews, Rogers-Ramanujan identities for partitions with “N copies of N”, J. Combin. Theory Ser. A, 45(1) (1987), 40–49. DOI: https://doi.org/10.1016/0097-3165(87)90045-8
A.K. Agarwal and M. Rana, New combinatorial versions of G¨ollnitz–Gordon identities, Util. Math., 79 (2009), 145–155.
K. Alladi, Partition identities involving gaps and weights, Trans. Amer. Math. Soc., 349(12) (1997), 5001–5019. DOI: https://doi.org/10.1090/S0002-9947-97-01831-X
P. A. MacMahon, Combinatory Analysis, volume 2, Cambridge Univ. Press, London and New York, 1916.
S. Sharma and M. Rana, Combinatorial interpretations of mock theta functions by attaching weights, Discrete Math., 341(7) (2018), 1903–1914. DOI: https://doi.org/10.1016/j.disc.2018.03.017
S. Sharma and M. Rana, On mock theta functions and weight-attached Frobenius partitions, Ramanujan J., 50 (2019), 289–303. DOI: https://doi.org/10.1007/s11139-018-0054-3