Eigenvalue Bounds in an Azimuthal Instability Problem of Inviscid Swirling Flows

Jump To References Section

Authors

  • ,IN
  • ,IN

DOI:

https://doi.org/10.18311/jims/2022/29629

Keywords:

Instability, Swirling Flows, Variable Density, Azimuthal Modes, Annulus Region.
76 E09.

Abstract

We consider the eigenvalue problem of azimuthal instability of inviscid swirling ows between coaxial cylinders. It is shown that the complex eigenvalues corresponding to unstable azimuthal normal modes lie inside a semi-ellipse type region whose major axis coincides with the range of the angular velocity of the basic ow while its minor axis depends on the minimum Richardson number, the azimuthal wave number, and the width of the annular region between the coaxial cylinders.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2022-08-23

How to Cite

Prakash, S., & Subbiah, M. (2022). Eigenvalue Bounds in an Azimuthal Instability Problem of Inviscid Swirling Flows. The Journal of the Indian Mathematical Society, 89(3-4), 387–405. https://doi.org/10.18311/jims/2022/29629

 

References

J. A. Adam, Critical layer singularities and complex eigenvalues in some di?erential equations of mathematical physics, Physics Reports, 142.5(1986), 263–356. DOI: https://doi.org/10.1016/0370-1573(86)90165-1

M. Behzad, N. Ashgriz and A. Mashayek, Azimuthal shear instability of a liquid jet injected into a gaseous cross-?ow, J. Fluid. Mech., 767(2015), 146–172. DOI: https://doi.org/10.1017/jfm.2015.36

S. Chandrasekhar, Hydrodynamic and Hydromagnetic Instability, Oxford, Clarendon Press, 1961.

H. Dattu and M. Subbiah, A note on the stability of swirling ?ows with radius dependent density with respect to in?nitesimal azimuthal disturbances, ANZIAM J., 56(2015), 209–232. DOI: https://doi.org/10.1017/S1446181115000036

H. N. Dixit and R. Govindarajan, Stability of a vortex in radial density strati?cation: role of wave interactions, J. Fluid Mech., 679(2011), 582–615. DOI: https://doi.org/10.1017/jfm.2011.156

P. G. Drazin and W. H. Reid, Hydrodynamic stability, Cambridge University Press, 1981.

Y. T. Fung, Non-axisymmetric instaility of a rotating layer of ?uid, J. Fluid Mech., 127(1983), 83–90. DOI: https://doi.org/10.1017/S0022112083002621

Y. T. Fung and U. H. Kurzweg, Stability of swirling ?ows with radius dependent density, J. Fluid Mech., 72(1975), 243–255. DOI: https://doi.org/10.1017/S0022112075003321

L. N. Howard and A. S. Gupta, On the hydrodynamic and hydromagnetic stability of swirling ?ows, J. Fluid Mech., 14( 1962), 463–476. DOI: https://doi.org/10.1017/S0022112062001366

R. K. Jain and G. T. Kochar, Stability of strati?ed shear ?ows, J. Math. Anal. Appl., 96(1983), 269–282. DOI: https://doi.org/10.1016/0022-247X(83)90040-9

G. T. Kochar and R. K. Jain, Note on Howard’s semicircle theorem, J. Fluid Mech., 91(1979), 489–491. DOI: https://doi.org/10.1017/S0022112079000276

U. H. Kurzweg, A criterion for the stability of heterogeneous swirling ?ows, ZAMP, 20 (1969), 141–143. DOI: https://doi.org/10.1007/BF01591125

S. Leibovich and K. Stewartson, A su?cient condition for the instability of columnar vortices, J. Fluid Mech., 126(1983), 335–356. DOI: https://doi.org/10.1017/S0022112083000191

S. Prakash and M. Subbiah, Bounds on complex eigenvalues in a hydromagnetic stability problem, J. Analysis.,(2021) DOI : 10.1007/s41478-020-00301-6. DOI: https://doi.org/10.1007/s41478-020-00301-6

S. N. Singh and W. L. Hankey, On vortex breakdown and instability, AFWAL-TR-81-3021,(1981), 1–25. DOI: https://doi.org/10.21236/ADA104980