Euclidean Algorithm in Imaginary Abelian Sextic Number Fields

Jump To References Section

Authors

  • IIITDM, Kancheepuram, Chennai-600127, Tamilnadu ,IN
  • SRTM University, Vishnupuri, Nanded-431606, Maharastra ,IN

DOI:

https://doi.org/10.18311/jims/2024/29992

Keywords:

Euclidean rings, Number fields, Class number, Non-Wieferich primes, Primitive roots

Abstract

We prove that all imaginary abelian sextic number fields ofunit rank less than 3 and having class number 1 are Euclidean

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-01-01

How to Cite

Subramani , M., & Sangale, U. K. (2024). Euclidean Algorithm in Imaginary Abelian Sextic Number Fields. The Journal of the Indian Mathematical Society, 91(1-2), 77–82. https://doi.org/10.18311/jims/2024/29992
Received 2022-04-21
Accepted 2022-06-20
Published 2024-01-01

 

References

Young-Ho Park, Soun-Hi Kwon, Determination of all imaginary abelian sextic number fields with class number ≤ 11, Acta Arith., 82(1) (1997), 27 - 43.

K. Srinivas , M. Subramani, Usha K Sangale, Euclidean Algorithm in Galois Quartic fields, Rendiconti del Circolo Matematico di Palermo Series 2,72, (2023) 1-7.

S. Alaca , K. S. Williams, Introductory algebraic number theory, Cambridge University Press, 2003.

David A Clark and M. Ram Murty, The Euclidean algorithm for Galois extensions. Journal f¨ur die reine und angewandte Mathematik, (459) (1995), 151 - 162.

M. Harper and M. Ram Murty Euclidean rings of algebraic integers, Canad. Jr. of Math., 56(1) (2004), 71 - 76.

K. Srinivas and M. Subramani, A note on Euclidean cyclic cubic fields, J. Ramanujan Math. Soc., 33(2) (2018), 125 - 133.

M. Ram Murty, K. Srinivas and M. Subramani, Admissible primes and Euclidean quadratic fields, J. Ramanujan Math. Soc., 33(2) (2018), 135 - 147.

The Sage Developers, Sage Mathematics Software (Version 9.8), 2022. https://www.sagemath.org/