Euclidean Algorithm in Imaginary Abelian Sextic Number Fields
DOI:
https://doi.org/10.18311/jims/2024/29992Keywords:
Euclidean rings, Number fields, Class number, Non-Wieferich primes, Primitive rootsAbstract
We prove that all imaginary abelian sextic number fields ofunit rank less than 3 and having class number 1 are Euclidean
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 M. Subramani , Usha K. Sangale
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2022-06-20
Published 2024-01-01
References
Young-Ho Park, Soun-Hi Kwon, Determination of all imaginary abelian sextic number fields with class number ≤ 11, Acta Arith., 82(1) (1997), 27 - 43.
K. Srinivas , M. Subramani, Usha K Sangale, Euclidean Algorithm in Galois Quartic fields, Rendiconti del Circolo Matematico di Palermo Series 2,72, (2023) 1-7.
S. Alaca , K. S. Williams, Introductory algebraic number theory, Cambridge University Press, 2003.
David A Clark and M. Ram Murty, The Euclidean algorithm for Galois extensions. Journal f¨ur die reine und angewandte Mathematik, (459) (1995), 151 - 162.
M. Harper and M. Ram Murty Euclidean rings of algebraic integers, Canad. Jr. of Math., 56(1) (2004), 71 - 76.
K. Srinivas and M. Subramani, A note on Euclidean cyclic cubic fields, J. Ramanujan Math. Soc., 33(2) (2018), 125 - 133.
M. Ram Murty, K. Srinivas and M. Subramani, Admissible primes and Euclidean quadratic fields, J. Ramanujan Math. Soc., 33(2) (2018), 135 - 147.
The Sage Developers, Sage Mathematics Software (Version 9.8), 2022. https://www.sagemath.org/