Some Congruence Properties of Stirling Numbers of the Second Kind

Jump To References Section

Authors

  • Department of Mathematics, Government Champhai College Champhai - 796 321, Mizoram ,IN
  • Department of Maths. and Comp. Sc., Mizoram University, Aizawl Aizawl - 796 004, Mizoram ,IN
  • Department of Mathematics, Guru Nanak Dev University, Amritsar - 143 005, Punjab ,IN

DOI:

https://doi.org/10.18311/jims/2024/30253

Keywords:

Congruence, divisibility, primes, p-adic valuation, Stirling numbers
11A07, 11B73, 11E95.

Abstract

This paper establishes certain formulas for p-adic valuation of Stirling numbers of the second kind S(pn, k) where p is a prime and some related classes. The parity of k also affects the p-adic valuation of S(n, k) if k is divisible by p. In fact, vp(S(p2, kp)) ≥ 5 if k is even. The congruence properties of S(pn, k) (mod p2) depend on the sum of the p-adic digits of k when k is not a multiple of p.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-01-01

How to Cite

Lalchhuangliana, A., Singh, S. S., & Singh, J. (2024). Some Congruence Properties of Stirling Numbers of the Second Kind. The Journal of the Indian Mathematical Society, 91(1-2), 111–128. https://doi.org/10.18311/jims/2024/30253
Received 2022-05-12
Accepted 2022-11-07
Published 2024-01-01

 

References

A. Adelberg, The p-adic Analysis of Stirling Numbers via Higher Order Bernoulli Numbers, Int. J. Number Theory, 14(10)(2018), 2767–2779.

A. Adelberg, The 2-adic analysis of Stirling numbers of the second kind via higher order Bernoulli numbers and polynomials, Int. J. Number Theory, 17(2021), 55–70.

T. Amdeberhan, D. Manna and Victor H. Moll, The 2-adic valuation of Stirling numbers, Exp. Mat., 17(2008), 69–82.

D. F. Bailey. Two p 3 variations of Lucas’ theorem, J. Number Theory, 35(2)(1990), 208–215.

O-Yeat Chan and D. Manna, Congruences for Stirling numbers of the second kind, Contemp. Math. 517, Gems in Experimental Mathematics, (2010), 97–111.

L. Comtet, Advanced Combinatorics, D. Reidel Publishing Company, Boston, 1974.

D. M. Davis, Divisibility by 2 and 3 of certain Stirling numbers, Integers, 8(2008), A56.

Y. Feng and M. Qiu, Some results on p-adic valuations of Stirling numbers of the second kind, AIMS Mathematics, 5(5)(2020), 4168–4196.

S. Friedland and C. Krattenthaler, 2-adic valuations of certain ratios of products of factorials and applications, Linear Algebra Appl., 426(2007), 159–189.

I. M. Gessel and T. Lengyel, On the order of Stirling numbers and alternating binomial coefficient sums, Fibonacci Quart., 39(2001), 444–454.

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A foundation for computer science, Addison-Wesley Publishing Company, New York, 1994.

S. Hong, J. Zhao and W. Zhao, The 2-adic valuations of Stirling numbers of the second kind, Int. J. Number Theory, 8(2012), 1057–1066.

Y. H. Kwong, Minimum periods of S(n,k) modulo M, Fibon. Quart., 27(1989), 217–221.

T. Lengyel, On the divisibility by 2 of the Stirling numbers of the second kind, Fibonacci Quart., 32(1994), 194–201.

D. Mihet, Legendre’s and Kummer’s theorems again, Resonance, 15(2010), 1111–1121.

B. E. Sagan, Congruence via Abelian Groups, J. Number Theory, 20(1985), 210—237.

S. S. Singh, A. Lalchhuangliana and P. K. Saikia, On the p-adic Valuations of Stirling Numbers of the Second Kind, Contemp. Math., 2(1)(2021), 64–76.

S. S. Singh and A. Lalchhuangliana, Divisibility of Certain Classes of Stirling numbers of the second kind, J. Comb. Number Theory, 12(2)(2022), 63–77.

S. D. Wannemacker, On 2-adic orders of Stirling numbers of the second kind, Integers, 5(2005), A21.

J. Zhao, S. Hong and W. Zhao, Divisibility by 2 of Stirling numbers of the second kind and their differences, J. Number Theory, 140(2014), 324–348.

W. Zhao, J. Zhao and S. Hong, The 2-adic Valuations of Differences of Stirling Numbers of the Second Kind, J. Number Theory, 153(2015), 309-320.