Some Congruence Properties of Stirling Numbers of the Second Kind
DOI:
https://doi.org/10.18311/jims/2024/30253Keywords:
Congruence, divisibility, primes, p-adic valuation, Stirling numbersAbstract
This paper establishes certain formulas for p-adic valuation of Stirling numbers of the second kind S(pn, k) where p is a prime and some related classes. The parity of k also affects the p-adic valuation of S(n, k) if k is divisible by p. In fact, vp(S(p2, kp)) ≥ 5 if k is even. The congruence properties of S(pn, k) (mod p2) depend on the sum of the p-adic digits of k when k is not a multiple of p.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 A. Lalchhuangliana, S. S. Singh, Jitender Singh
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2022-11-07
Published 2024-01-01
References
A. Adelberg, The p-adic Analysis of Stirling Numbers via Higher Order Bernoulli Numbers, Int. J. Number Theory, 14(10)(2018), 2767–2779.
A. Adelberg, The 2-adic analysis of Stirling numbers of the second kind via higher order Bernoulli numbers and polynomials, Int. J. Number Theory, 17(2021), 55–70.
T. Amdeberhan, D. Manna and Victor H. Moll, The 2-adic valuation of Stirling numbers, Exp. Mat., 17(2008), 69–82.
D. F. Bailey. Two p 3 variations of Lucas’ theorem, J. Number Theory, 35(2)(1990), 208–215.
O-Yeat Chan and D. Manna, Congruences for Stirling numbers of the second kind, Contemp. Math. 517, Gems in Experimental Mathematics, (2010), 97–111.
L. Comtet, Advanced Combinatorics, D. Reidel Publishing Company, Boston, 1974.
D. M. Davis, Divisibility by 2 and 3 of certain Stirling numbers, Integers, 8(2008), A56.
Y. Feng and M. Qiu, Some results on p-adic valuations of Stirling numbers of the second kind, AIMS Mathematics, 5(5)(2020), 4168–4196.
S. Friedland and C. Krattenthaler, 2-adic valuations of certain ratios of products of factorials and applications, Linear Algebra Appl., 426(2007), 159–189.
I. M. Gessel and T. Lengyel, On the order of Stirling numbers and alternating binomial coefficient sums, Fibonacci Quart., 39(2001), 444–454.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A foundation for computer science, Addison-Wesley Publishing Company, New York, 1994.
S. Hong, J. Zhao and W. Zhao, The 2-adic valuations of Stirling numbers of the second kind, Int. J. Number Theory, 8(2012), 1057–1066.
Y. H. Kwong, Minimum periods of S(n,k) modulo M, Fibon. Quart., 27(1989), 217–221.
T. Lengyel, On the divisibility by 2 of the Stirling numbers of the second kind, Fibonacci Quart., 32(1994), 194–201.
D. Mihet, Legendre’s and Kummer’s theorems again, Resonance, 15(2010), 1111–1121.
B. E. Sagan, Congruence via Abelian Groups, J. Number Theory, 20(1985), 210—237.
S. S. Singh, A. Lalchhuangliana and P. K. Saikia, On the p-adic Valuations of Stirling Numbers of the Second Kind, Contemp. Math., 2(1)(2021), 64–76.
S. S. Singh and A. Lalchhuangliana, Divisibility of Certain Classes of Stirling numbers of the second kind, J. Comb. Number Theory, 12(2)(2022), 63–77.
S. D. Wannemacker, On 2-adic orders of Stirling numbers of the second kind, Integers, 5(2005), A21.
J. Zhao, S. Hong and W. Zhao, Divisibility by 2 of Stirling numbers of the second kind and their differences, J. Number Theory, 140(2014), 324–348.
W. Zhao, J. Zhao and S. Hong, The 2-adic Valuations of Differences of Stirling Numbers of the Second Kind, J. Number Theory, 153(2015), 309-320.