Cyclic and Constacyclic Codes for F2[u,v]/2,v3 – v,uv,vu>
DOI:
https://doi.org/10.18311/jims/2022/30791Keywords:
Cyclic Code, Constacyclic Code, Gray Map.Abstract
In this paper, we study cyclic and β-constacyclic codes over the ?nite commutative ring R = F2[u,v]/<u2,v3 ? v,uv,vu> with ? = (1+u),(1+u+v+v2) and (1+v+v2). We establish a Gray map from R to F42 and prove that the Gray image of a cyclic code is a quasi-cyclic code of index 4. It is also shown that the Gray image of β-constacyclic code overRis either β-equivalent, β-equivalent or β-equivalent to a quasi-cyclic code of length 4n and index 4 over F2 when ? = (1 + u),(1 + u + v + v2) and (1 + v + v2), respectively.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 TH. Rojita Chanu, ST. Timothy Kom, O. Ratnabala Devi
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
T. Abualrub and I. Siap, Cyclic codes over the ring Z2 + uZ2 and Z2 + uZ2 + u2Z2, Des. Codes Crypt., 42 (3)(2007), 273–287. DOI: https://doi.org/10.1007/s10623-006-9034-5
T. Bag, H. Islam, O. Prakash and A. K. Upadhyay, A note on constacyclic and skew constacyclic codes over the ring Zp[u,v]/hu2 − u,v2 − v,uv − vui, J. Algebra Comb. Discrete Appl., 6 (3)(2018), 163–172. DOI: https://doi.org/10.13069/jacodesmath.617244
A. Bayram and I. Siap, Structure of codes over the ring Z3[v]/hv3 −vi, Appl. Algebra Engrg. Commun. Comput., 24 (2013), 369–386. DOI: https://doi.org/10.1007/s00200-013-0208-x
Y. Cengellenmis, On the cyclic codes over F3+vF3, Int. J. Algebra, 4 (6)(2010), 253-259.
A. Dertli and Y. Cengellenmis, On (1+u)-Cyclic and cyclic codes over F2 +uF2 +vF2, Eur. J. Pure Appl. Math., 9 (3)(2016), 305–313.
A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sol´e, The Z4-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301–319. DOI: https://doi.org/10.1109/18.312154
H. Islam and O. Prakash, A study of cyclic and constacyclic codes over Z4 +uZ4 +vZ4, Int. J. Inf. Coding Theory, 5 (2)(2018), 155–168.
S. Karadeniz and B. Yildiz, (1 + v)-Constacyclic codes over F2 + uF2 + vF2 + uvF2, J. the Franklin Inst., 348 (9)(2011), 2625–2632. DOI: https://doi.org/10.1016/j.jfranklin.2011.08.005
St Timothy Kom, O. Ratnabala Devi and Th. Rojita Chanu, A note on constacyclic codes over the ring Z3[u,v]/hu2 − u,v2,uv,vui, J. Math. Comput. Sci., 11 (2)(2021), 1437–1454.
M. ¨Ozkan, A. Dertli and Y. Cengellenmis, On Gray images of constacyclic codes over the finite ring F2 + u1F2 + u2F2, TWMS J. App. Eng. Math., 9 (4)(2019), 876–881.
M. ¨Ozkan and F. ¨Oke, On some special codes over F3 + vF3 + uF3 + u2F3, Math. Sci. Appl. E-Notes, 4 (1)(2016), 40–44. DOI: https://doi.org/10.36753/mathenot.421358
J. F. Qian, L. N. Zhang and S. X. Zhu, (1 + u)-Constacyclic and cyclic codes over F2 + uF2, Appl. Math. Lett., 19 (2006), 820–823. DOI: https://doi.org/10.1016/j.aml.2005.10.011
B. Yildiz and S. Karadeniz, Cyclic codes over F2 +uF2 +vF2 +uvF2, Des. Codes Crypt., 58 (3)(2011), 221–234. DOI: https://doi.org/10.1007/s10623-010-9399-3
S. Zhu and X. Chen, Cyclic DNA codes over F2+uF2+vF2+uvF2 and their applications, J. Appl. Math. Comput., 55 (2017), 479–493. DOI: https://doi.org/10.1007/s12190-016-1046-3