Weighted Quasi-Metrics Associated with Finsler Metrics
DOI:
https://doi.org/10.18311/jims/2023/31296Keywords:
Reversible Geodesics, Weighted Quasi-Metrics, Absolute Homogeneous Metrics, Metric Structure, Perimeter, Embedding.Abstract
The current paper deals with some new classes of Finsler metrics with reversible geodesics. We construct weighted quasi-metrics associated with these metrics. Further, we investigate some important geometric properties of weighted quasi-metric space. Finally, we discuss the embedding of quasi-metric spaces with generalized weight.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Gauree Shanker, Sarita Rani
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, GTM, Vol. 200, Springer-Verlag, 2000. DOI: https://doi.org/10.1007/978-1-4612-1268-3
S. S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts Math., 6, World Sci. Publ., Singapore, 2005. DOI: https://doi.org/10.1142/5263
M. Crampin, Randers spaces with reversible geodesics, Publ. Math. Debrecen, 67 (3-4) (2005), 401–409. DOI: https://doi.org/10.5486/PMD.2005.3200
G. Hamel, U¨ber die Geometrieen, in denen die Geraden die Ku¨rzesten sind, Math. Ann., 57 (1903), 231–264. DOI: https://doi.org/10.1007/BF01444348
H. P. A. K¨unzi and V. Vajner, Weighted quasi–metrics in: Papers on General topology and Appl., Annals New York Acad. Sci., 728 (1994), 64–77. DOI: https://doi.org/10.1111/j.1749-6632.1994.tb44134.x
I. M. Masca, S. V. Sabau and H. Shimada, Reversible geodesics for (α, β)-metrics, Int. J. Math., 21(8) (2010), 1071–1094. DOI: https://doi.org/10.1142/S0129167X10006355
I. M. Masca, S. V. Sabau and H. Shimada, Necessary and sufficient conditions for two-dimensional (α, β)-metrics with reversible geodesics, preprint, arXiv:1203.1377V1[math.DG].
S. G. Matthews, Partial metric topology in: Papers on General topology and Applications, Ninth summer Conf. Slippery. Rock, PA, Annals New York Acad. Sci., 767 (1993), 188–193.
S. V. Sabau, K. Shibuya and H. Shimada, Metric structures associated to Finsler metrics, Publ. Math. Debrecen, 84(1-2) (2014), 89–103. DOI: https://doi.org/10.5486/PMD.2014.5886
S. V. Sabau and H. Shimada, Finsler manifolds with reversible geodesics, Rev. Roumaine Math. Pures Appl., 57(1) (2012), 91–103.
G. Shanker and S. A. Baby, Reversible geodesics of Finsler spaces with a special (α, β)-metric, Bull. Cal. Math. Soc., 109(3) (2017), 183–188.
Z. Shen and G. C. Yildrin, On a class of projectively flat metrics with constant flag curvature, Canad. Math. Bull., 60(2) (2008), 443–456. DOI: https://doi.org/10.4153/CJM-2008-021-1
Z. Shen, On projectively flat (α, β)-metrics, Canad. Math. Bull., 52(1) (2009), 132–144. DOI: https://doi.org/10.4153/CMB-2009-016-2
P. Vitolo, A representation theorem for quasi-metric spaces, Topology Appl., 65 (1995), 101–104. DOI: https://doi.org/10.1016/0166-8641(95)00106-Q