Weighted Quasi-Metrics Associated with Finsler Metrics

Jump To References Section

Authors

  • Department of Mathematics and Statistics, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab-151 401 ,IN
  • Department of Mathematics and Statistics, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab-151 401 ,IN

DOI:

https://doi.org/10.18311/jims/2023/31296

Keywords:

Reversible Geodesics, Weighted Quasi-Metrics, Absolute Homogeneous Metrics, Metric Structure, Perimeter, Embedding.

Abstract

The current paper deals with some new classes of Finsler metrics with reversible geodesics. We construct weighted quasi-metrics associated with these metrics. Further, we investigate some important geometric properties of weighted quasi-metric space. Finally, we discuss the embedding of quasi-metric spaces with generalized weight.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2023-03-24

How to Cite

Shanker, G., & Rani, S. (2023). Weighted Quasi-Metrics Associated with Finsler Metrics. The Journal of the Indian Mathematical Society, 90(1-2), 37–52. https://doi.org/10.18311/jims/2023/31296

 

References

D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, GTM, Vol. 200, Springer-Verlag, 2000. DOI: https://doi.org/10.1007/978-1-4612-1268-3

S. S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts Math., 6, World Sci. Publ., Singapore, 2005. DOI: https://doi.org/10.1142/5263

M. Crampin, Randers spaces with reversible geodesics, Publ. Math. Debrecen, 67 (3-4) (2005), 401–409. DOI: https://doi.org/10.5486/PMD.2005.3200

G. Hamel, U¨ber die Geometrieen, in denen die Geraden die Ku¨rzesten sind, Math. Ann., 57 (1903), 231–264. DOI: https://doi.org/10.1007/BF01444348

H. P. A. K¨unzi and V. Vajner, Weighted quasi–metrics in: Papers on General topology and Appl., Annals New York Acad. Sci., 728 (1994), 64–77. DOI: https://doi.org/10.1111/j.1749-6632.1994.tb44134.x

I. M. Masca, S. V. Sabau and H. Shimada, Reversible geodesics for (α, β)-metrics, Int. J. Math., 21(8) (2010), 1071–1094. DOI: https://doi.org/10.1142/S0129167X10006355

I. M. Masca, S. V. Sabau and H. Shimada, Necessary and sufficient conditions for two-dimensional (α, β)-metrics with reversible geodesics, preprint, arXiv:1203.1377V1[math.DG].

S. G. Matthews, Partial metric topology in: Papers on General topology and Applications, Ninth summer Conf. Slippery. Rock, PA, Annals New York Acad. Sci., 767 (1993), 188–193.

S. V. Sabau, K. Shibuya and H. Shimada, Metric structures associated to Finsler metrics, Publ. Math. Debrecen, 84(1-2) (2014), 89–103. DOI: https://doi.org/10.5486/PMD.2014.5886

S. V. Sabau and H. Shimada, Finsler manifolds with reversible geodesics, Rev. Roumaine Math. Pures Appl., 57(1) (2012), 91–103.

G. Shanker and S. A. Baby, Reversible geodesics of Finsler spaces with a special (α, β)-metric, Bull. Cal. Math. Soc., 109(3) (2017), 183–188.

Z. Shen and G. C. Yildrin, On a class of projectively flat metrics with constant flag curvature, Canad. Math. Bull., 60(2) (2008), 443–456. DOI: https://doi.org/10.4153/CJM-2008-021-1

Z. Shen, On projectively flat (α, β)-metrics, Canad. Math. Bull., 52(1) (2009), 132–144. DOI: https://doi.org/10.4153/CMB-2009-016-2

P. Vitolo, A representation theorem for quasi-metric spaces, Topology Appl., 65 (1995), 101–104. DOI: https://doi.org/10.1016/0166-8641(95)00106-Q