Numerical Approximation of the Quenching Time for One-Dimensional p-Laplacian with Singular Boundary Flux
DOI:
https://doi.org/10.18311/jims/2023/31298Keywords:
p-Laplacian, Discretization, Singular Boundary Flux, Discrete Quenching Time, Convergence.Abstract
This paper concerns the study of the numerical approximation for a discrete non-newtonian filtration system with nonlinear boundary conditions. We find some conditions under which the solution of a discrete form of above problem quenches in a finite time and estimate its discrete quenching time. We also establish the convergence of the discrete quenching time to the theoretical one when the mesh size tends to zero.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 N'Guessan Koffi, Camara Gninlfan Modeste, Coulibaly Adama, Toure Kidjegbo Augustin
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
L. M. Abia, J. C. L´o pez-Marcos and J. Mart´ınez, On the blow-up time convergence of semmidiscretizations of reaction-diffusion equations, Appl. Numer. Math., 26 (4) (1998), 399–414. DOI: https://doi.org/10.1016/S0168-9274(97)00105-0
L. M. Abia, J. C. L´opez-Marcos and J. Mart´ınez, On the blow-up for semmidiscretizations of reaction-diffusion equations, Appl. Numer. Math., 20 (1–2) (1996), 145–156. DOI: https://doi.org/10.1016/0168-9274(95)00122-0
A. Anatoly, B. Murat and M. Mani, Crank-Nicolson type compact difference schemes for a loaded time-fractional hallaire equation, Fract. Calc. Appl. Anal., 24 (4) (2021), 1231–1256. DOI: https://doi.org/10.1515/fca-2021-0053
E. Feireisl, H. Petzeltov´a and F. Simondon: Adminissible solutions for a class of non-linear parabolic problems with non-negative data, Proc. Roy. Soc. Edinburgh Sect., A 131 (2001), 857–883. DOI: https://doi.org/10.1017/S0308210500001153
M. Fila and H. A. Levine: Quenching on the boundary, Nonlinear Anal. TMA, 21 (1993), 795–802. DOI: https://doi.org/10.1016/0362-546X(93)90124-B
H. Kawarada, On solutions of initial boundary problem ut = uxx + (1 − u)−1 , Plubl. Res. Inst. Math. Sci., 10 (1975), 729–736. DOI: https://doi.org/10.2977/prims/1195191889
F. Kong and Z. Luo, Solitary wave and periodic wave solutions for the non-Newtonian filtration equations with non-linear sources and a time varying delay, Acta Math. Sci., 37 (2017), 1803–1816. DOI: https://doi.org/10.1016/S0252-9602(17)30108-X
D. Nabongo and T. K. Boni, Quenching for semidiscretizations of heat equation with a singular boundary condition, Asymptot. Anal., 59 (1) (2008), 27–38. DOI: https://doi.org/10.3233/ASY-2008-0889
D. Nabongo and T. K. Boni, An adaptive schene to treat the phenomenon of quenching for a heat equation with non-linear boundar conditions, Numerical Analysis and Appl., 2 (2009), 87–98. DOI: https://doi.org/10.1134/S199542390901008X
K. N’Guessan and N. Diabat´e, Numerical quenching solutions of a parabolic equation Mogeling Electrostatic Mens, Gen. Math. Notes, 29 (1) (2015), 40–60.
K. N’Guessan and N. Diabat´e, Blow up for discretization of some semilinear parabolic equation with a convection term, Global J. Pure Appl. Math., 12 (2016), 3367–3394.
K. Nitin and M. Mani, Wavelet collocation method for fractional optimal control problems with fractional Bolza cost, Numer. Methods Partial Differential Equations, 37 (2) (2021), 1693–1724. DOI: https://doi.org/10.1002/num.22604
K. Nitin and M. Mani, Method for solving non-linear fractional optimal control problems by using Hermite scaling function with error estimates, Optimal Control, Appl. Methods, 42 (2021), 417–444. DOI: https://doi.org/10.1002/oca.2681
Z. Wang, J. Yin and C. Wang, Critical exponents of the non-Newtonian polytropic filtration equation with nonlinear boundary conditions, Appl. Math. Letter, 20 (2007), 142–147. DOI: https://doi.org/10.1016/j.aml.2006.03.008
Y. Yang, J. Yin and C. Jin, A quenching phenomenon for one-dimensional p-Laplace with singular boundary flux, Appl. Math. Lett., 23 (2010), 955–959. DOI: https://doi.org/10.1016/j.aml.2010.04.001