Φ − X - Elements in Multiplicative Lattices
DOI:
https://doi.org/10.18311/jims/2024/31309Keywords:
Multiplicative lattice, Prime element, ϕ − X-element, ϕ − n-element, ϕ − J-element, ϕ − r-element, ϕ − n-ideal, ϕ − r-ideal, ϕ − J-ideal.Abstract
In this paper, author presents a generalization of an X-element in a multiplicative lattice L. For a particular M-closed subset X, author defines the concept of ϕ − r-element, ϕ − n-element, and ϕ − J-element. These elements generalize the notion of ϕ − r-ideals, ϕ − n-ideals, and ϕ − J-ideals of a commutative ring with unity to multiplicative lattices. An ideal I of a commutative ring R with unity is a ϕ − n-ideal (ϕ − Jideal) of R if and only if I is a ϕ − n-element (ϕ − J-element) of Id(R), the ideal lattice of R is proved.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sachin Sarode
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-09-20
Published 2024-01-01
References
D. D. Anderson and Malik Bataineh, Generalizations of prime ideals, Commun. Algebra, 36 (2) (2008), 686-696.
D. F. Anderson and Ayman Badawi, On n-absorbing ideals of commutative rings, Commun. Algebra, 39 (5) (2011), 1646-1672.
E. Y. Celikel, E. A. Ugurlu and G. Ulucak, On ϕ-2-absorbing elements in multiplicative lattices, Palestine J. Math., 5 (1) (2016), 127-135.
E. Y. Celikel, G. Ulucak and E. A. Ugurlu, On ϕ-2- absorbing primary elements in multiplicative lattices, Palestine J. Math., 5 (1) (2016), 136-146.
E. Y. Celikel, Generalizations of n-ideals of Commutative Rings, Erzincan ¨Universitesi Fen Bilimleri Enstit¨us¨u Dergisi, 12 (2) (2019), 650 - 657.
A. Hamed and A. Malek, S-prime ideals of a commutative ring, Beitr. Algebra Geom., 61 (2020), 533–542.
V. Joshi and S. B. Ballal, A note on n-Baer multiplicative lattices, Southeast Asian Bull. Math., 39 (2015), 67-76.
C. Jayaram, U. Tekir and E. Yetkin, 2-absorbing and weakly 2-absorbing elements in multiplicative lattices, Commun. Algebra, 42 (2014), 1-16.
H. A. Khashan and A. B. Bani-Ata, J-ideals of commutative rings, Int. Electron. J. Algebra, 29 (2021), 148-164.
C. S. Manjarekar and A. V. Bingi, ϕ-prime and ϕ-primary elements in multiplicative lattices, Algebra, Volume 2014, Article ID 890312, 7 pages.
R. Mohamadian, r-ideals in commutative rings, Turk. J. Math., 39 (2015), 733-749.
S. Sarode and V. Joshi, X-elements in multiplicative lattices-A generalization of J-ideals, n-ideals and r-ideals in rings, Int. Electron. J. Algebra, 32 (2022), 46-61.
U. Tekir, S. Koc and K. H. Oral, n-ideals of commutative rings, Filomat, 31 (10) (2017), 2933-2941.
E. A. Ugurlu,Generalizations of r-ideals of commutative rings, J. Interdiscip. Math., 24 (8) (2021), 2283-2293.
M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc., 45 (1939), 335-354.