The Boundedness of Fractional Hardy-Littlewood Maximal Operator On Variable ℓp(·)(Z) Spaces Using Calderon-Zygmund Decomposition

Jump To References Section

Authors

  • BITS-Pilani, Hyderabad-500 078, Telangana ,IN
  • BITS-Pilani, Hyderabad-500 078, Telangana ,IN

DOI:

https://doi.org/10.18311/jims/2024/31327

Keywords:

Calderon-Zygmund decomposition, Log Holder continuity, Fractional Hardy-Littlewood maximal operator, Variable sequence spaces.

Abstract

In this paper, we prove strong type and weak type inequalities of the Hardy-Littlewood maximal operator(M) and fractional Hardy- Littlewood maximal operator(Mα) on variable sequence spaces ℓp(·)(Z). This is achieved using Calderon-Zygmund decomposition for sequences, properties of modular functional and Log Holder continuity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-01-01

How to Cite

Sri Sakti Swarup, A., & Michael Alphonse, A. (2024). The Boundedness of Fractional Hardy-Littlewood Maximal Operator On Variable ℓ<i><sup>p(·)</sup></i>(Z) Spaces Using Calderon-Zygmund Decomposition. The Journal of the Indian Mathematical Society, 91(1-2), 237–252. https://doi.org/10.18311/jims/2024/31327
Received 2022-09-26
Accepted 2023-05-09
Published 2024-01-01

 

References

A. Almeida and S. Samko., Fractional and hypersingular operators in variable exponent spaces on metric measure spaces, Mediterranean Journal of Mathematics, 6 (2)(2009), 215-232.

D. Cruz-Uribe and P.Shukla, The boundedness of Fractional Maximal Operators on Variable Lebesgue spaces over spaces of homogeneous type, Studia Mathematica, 1 (2017), 1-31.

D. Cruz-Uribe and L. Diening and A. Fiorenza., A new proof of the boundedness of maximal operators on variable Lebesgue spaces, Bollettino dell’Unione Matematica Italiana, 9 (2008), 151-173.

D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces:Applied and Numerical Harmonic Analysis, Foundations and Harmonic analysis, 1034, Springer, Heidelberg, 2013.

L. Diening and P. Harjulehto and P. Hasto and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer Heidelberg, 2011.

Erwin Kreyszig, Introductory Functional Analysis with Applications, Kluwer, Boston, 2007.

T. Futamura and Y. Mizuta and T. Shimomura, Sobolev embeddings for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn. Math., 31(2) (2006), 495-522.

O. Gorosito and G. Pradolini and O. Salinas., Boundedness of fractional operators in weighted variable exponent spaces with non doubling measures, Czechoslovak Math. J, 60(135) (2010), 1007-1023.

P. Harjulehto and P. Hasto, and M. Pere,Variable exponent Sobolev spaces on metric measure spaces, Funct. Approx. Comment. Math, 36 (2006), 79-94.

V. Kokilashvili and A. Meskhi and M. Sarwar, Two-weight norm estimates for maximal and Calderon-Zygmund operators in variable exponent Lebesgue spaces, Georgian Math. Journal, 20 (2013), 547-572.

V. Kokilashvili and S. Samko,The maximal operator in weighted variable spaces on metric measure spaces, Proc. A. Razmadze Math. Inst., (2007), 137-144.

Xiaoying Han and Peter E. Kloeden and Jacson Simsen, Sequence Spaces with Variable Exponents for Lattice Systems with Nonlinear Diffusion,Victor A. Sadovnichiy and Michael Z. Zgurovsky, , Understanding Complex Systems Modern mathematics and Mechanics Fundamentals and Problems and Challenges, Springer, 2019.