A Weighted Hardy-Type Inequality in Time Scale

Jump To References Section

Authors

  • Department of Mathematics, IIIT, Bhubaneswar-751003, Odisha ,IN
  • Department of Mathematics, IIIT, Bhubaneswar-751003, Odisha ,IN

DOI:

https://doi.org/10.18311/jims/2024/31819

Keywords:

Hardy’s Inequality, Holder’s Inequality, Time Scale, Higher Integrability Theorem.

Abstract

In this article, we establish some new dynamic inequalities for convex decreasing functions on time scale. A refinement of Hardy type inequality with exponential weight is obtained on time scale. As an application, some higher integrability theorems are derived.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-07-01

How to Cite

Sahu, S., & Sunanda, S. K. (2024). A Weighted Hardy-Type Inequality in Time Scale. The Journal of the Indian Mathematical Society, 91(3-4), 287–302. https://doi.org/10.18311/jims/2024/31819
Received 2022-10-26
Accepted 2023-04-19
Published 2024-07-01

 

References

R. Agarwal, M. Bohner and A. Peterson, Inequalities on time scales: a survey, Mathematical Inequalities and Applications, 4(2001), 535-558.

R. Agarwal, M. Bohner, O’R. Donal and A. Peterson, Dynamic equations on time scales: a survey, Journal of Computational and Applied Mathematics, 141(1-2)(2002), 1-26.

A. Canale, Improved Hardy inequalities with a class of weights, Mathematics, MDPI, 11(2023), 1-11.

M. Bohner and A. C. Peterson, Dynamic equations on time scales: An introduction with applications, Springer Science + Business Media, U.S.A., 2001.

M. Bohner and A. C. Peterson, Advances in dynamic equations on time scales, Springer Science + Business Media, U.S.A., 2002.

M. Bohner and B. Karpuz, The gamma function on time scales, Dynamics of Continuous, Discrete and Impulsive systems Series A: Math. Analy., 20(2013), 507-522.

B. Bojarski, C. Sbordone and I. Wik, The Muckenhoupt class Ai(R), Studia Mathematica. 101(2)(1992).

M. Franciosi and G. Moscariello, Higher integrability results, manuscripta mathematica, Springer, 52(1)(1985), 151-170.

F. W. Gehring, The Lp-integrability of the partial derivatives of a quasiconformal mapping, Acta Mathematica, Institut Mittag-Leffler, 130(1973), 265-277.

F. W. Gehring, The Lp-integrability of the partial derivatives of a quasiconformal mapping, Bulletin of the American Mathematical Society, 79(2)(1973), 465-466.

G. H. Hardy, Some simple inequalities satisfied by convex functions, Messenger Math., 58(1929), 145-152.

G. H. Hardy, J. E. Littlewood, G. P´olya and D. E. Littlewood, Inequalities, Cambridge university press, Cambridge, UK, 1952.

A. A. Korenovski, The exact continuation of a Reverse Holder Inequality and Mukenhoupt’s conditions, Math. notes, 52(5-6)(1992), 1192-1201.

D’A. Livia and C. Sbordone, Reverse Holder inequalities: a sharp result, Rendiconti di Matematica-VII. 10(1990), 357-366.

M. Marius and R. Purice, Hardy type inequalities with exponential weights for a class of convolution operators, Ark. Mat., 45(2007), 83-103.

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Transactions of the American Mathematical Society, 165(1972), 207-226.

A. Popoli, Optimal integrability in Bqp classes, Le Matematiche, 52(1)(1997), 159-170.

S. H. Saker, R. R. Mahmoud, M.M. Osman and R. P. Agarwal, Some new generalized forms of Hardy’s type inequality on time scales, Math. Inequal. Appl. 20(2017), 459-481.

S. H. Saker and I. Kubiaczyk, Higher summability and discrete weighted Muckenhoupt and Gehring type inequalities, Proc. of the Edinburgh Math. Soc., (2018), 1-25.

S. H. Saker, M. Osman and M. Krni´c, Higher integrability theorems on time scales from reverse H¨older’s inequalities, Appl. Anal. and Dis. Math., JSTOR, 13(3)(2019), 819-838.

D. T. Shum, On integral inequalities related to Hardy’s, Canad. Math. Bull., 14(1971), 225-230.

H. Stefan, Analysis on measure chains − a unified approach to continuous and discrete calculus, Results in Mathematics, Springer, 18(1)(1990), 18-56.