Categorical Construction of Minimal Model of Lie Algebra

Jump To References Section

Authors

  • Department of Mathematics, School of applied sciences, KIIT University, Bhubaneswar-751024, Odisha ,IN
  • Adjunct Professor, Department of Mathematics, Birla Institute of Technology Mesra, Ranchi-835215, Zarkhand ,IN

DOI:

https://doi.org/10.18311/jims/2024/31885

Keywords:

Category of Fractions, Calculus of Right Fractions, Grothendieck Universe, Adams Cocompletion, Differential Graded Lie Algebra, Minimal Model.

Abstract

Under a reasonable assumption, the minimal model of a 1-connected differential graded Lie algebra can be expressed as the Adams cocompletion of the differential graded Lie algebra with respect to a given set of differential graded Lie algebra maps.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-07-01

How to Cite

Routaray, M., & Behera, A. (2024). Categorical Construction of Minimal Model of Lie Algebra. The Journal of the Indian Mathematical Society, 91(3-4), 328–337. https://doi.org/10.18311/jims/2024/31885

 

References

Adams J.F., On the cobar construction, Proc. N.A.S. USA, 42 (1956), 409-412.

Adams J.F., Localization and Completion, Lecture Notes in Mathematics, Univ. of Chicago, 251 (1975).

Adams J.F. and Hilton P., On the chain algebra of a loop space, Comment. Math. Helvet., 20 (1955), 305-330.

Baues H.J. and Lemaire J.M., Minimal Models in Homotopy Theory, Math. Ann., 225 (1975), 219-242.

Deleanu A., Frei A. and Hilton P.J. Generalized Adams completion, Trans. Amer. Math. Soc. Cahiers de Top. et Geom. Diff., 15 (1974), 61 -82.

Halperin S. , Lectures on Minimal Models, Publ.U. E.R. de Math`ematiques, Univ. de Lille I, 1981.

Manetti M., Lectures on deformations on complex manifolds, Rendiconti di Mathematica, 24 (2004), 1-183.

Nanda S., A note on the universe of a Category of fractions, Canad. Math. Bull., 23 (4) (1980), 425-427.

Routaray M., Sahu P.K and Naik S., A study on fuzzy ℑ∗-structure compact open topology, International Journal of Fuzzy Logic and Intelligent Systems, 23 (3) (2023), 311-317.

Quillen D., Rational homotopy theory, Ann. Math., 90 (1969), 205-295.

Sullivan D., Differential forms and the topology of manifolds, Proc. Conf. Manifolds, tokyo, 1973.

Sullivan D., Infinitesimal computations in topology, Publ. Math. del’IHES, 47 (1975), 269-331.

Wu wen-tsun, Rational Homotopy Type, LNM 1264, Springer-Verlag, Berlin, 1980.