Continuous Controlled Generalized Fusion Frames in Hilbert Spaces

Jump To References Section

Authors

  • Department of Mathematics, Barwan N. S. High School (HS), Murshidabad-742132 West Bengal ,IN
  • Department of Mathematics, Uluberia College, Howrah-711315 West Bengal ,IN

DOI:

https://doi.org/10.18311/jims/2024/31971

Keywords:

Frame, g-Fusion Frame, Continuous g-Fusion Frame, Controlled Frame, Controlled g-Fusion Frame.

Abstract

We introduce the notion of continuous controlled g-fusion frame in Hilbert space which is a generalization of discrete controlled g-fusion frame. Some characterizations of continuous controlled g-fusion frame have been presented.We define the frame operator and multiplier of continuous controlled g-fusion Bessel families in Hilbert spaces. Continuous resolution of the identity operator on a Hilbert space using the theory of continuous controlled g-fusion frame is being considered. Finally, we discuss perturbation results of continuous controlled g-fusion frame.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-07-01

How to Cite

Ghosh, P., & Samanta, T. K. (2024). Continuous Controlled Generalized Fusion Frames in Hilbert Spaces. The Journal of the Indian Mathematical Society, 91(3-4), 366–387. https://doi.org/10.18311/jims/2024/31971

 

References

R. Ahmadi, G. Rahimlou, V. Sadri and R. Zarghami Farfar, Constructions of K-g fusion frames and their duals in Hilbert spaces, Bull. Transilvania Un. Brasov., 13 (62)(2020), 17-32.

N. Assila, S. Kabbaj and B. Moalige, Controlled K-fusion frame for Hilbert space, Moroccan J. of Pure and Appl. Anal., 7 (1)(2021), 116-133.

P. Balazs, J. P. Antonie and A. Grybos, Weighted and controlled frames: mutual relationship and first numerical properties, Int. J. Wavelets, Multiresolution Info. Proc., 14 (1) (2010), 109-132.

O. Christensen, An introduction to frames and Riesz bases, Birkhauser, 2008.

I. Daubechies, A. Grossmann and Y. Mayer, Painless nonorthogonal expansions, J. Math. Phys., 27 (5) (1986), 1271-1283.

R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc., 17 (1966), 413-415.

R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), 341-366.

M. H. Faroughi, A. Rahimi and R. Ahmadi, GC-fusion frames, Methods Funct. Anal. Topol., 16 (2)(2010), 112-119.

P. Gavruta, On the duality of fusion frames, J. Math. Anal. Appl., 333 (2007), 871-879.

P. Ghosh and T. K. Samanta, Stability of dual g-fusion frame in Hilbert spaces, Methods Funct. Anal. Topol., 26 (3)(2020), 227-240.

P. Ghosh and T. K. Samanta, Generalized atomic subspaces for operators in Hilbert spaces, Mathematica Bohemica, 147 (3)(2022), 325-345.

P. Ghosh and T. K. Samanta, Generalized fusion frame in tensor product of Hilbert spaces, Journal of the Indian Math. Soc., 89 (1-2)(2022), 58-71.

P. Ghosh and T. K. Samanta, Controlled generalized fusion frame in the tensor product of Hilbert spaces, Armen. J. Math., 13 (13)(2021), 1-18.

G. Kaiser, A Friendly Guide to Wavelets, Birkhauser, 1994.

M. Khayyami and A. Nazari, Construction of continuous g-frames and continuous fusion frames, Sahand Commun. Math. Anal., 4 (1)(2016), 43-55.

E. Kreyzig, Introductory Functional Analysis with Applications. Wiley, New York, 1989.

G. J. Murphy, C∗ Algebras and Operator Theory, Academic Press, San Diego, 1990.

V. Sadri, Gh. Rahimlou, R. Ahmadi and R. Zarghami Farfar, Generalized Fusion Frames in Hilbert Spaces, Submitted, arXiv: 1806.03598v1 [ math.FA ] 10 Jun 2018.

H. Shakoory, R. Ahamadi, N. Behzadi and S. Nami, ( C, C ′ )-Controlled g-fusion frames, Submitted (2018).