On a Posteriori Error Bound for Weak Galerkin Finite Element Method for Semilinear Parabolic Problems

Jump To References Section

Authors

  • Department of Mathematics, BITS Pilani Hyderabad, Hyderabad - 500078 ,IN
  • Department of Mathematics, BITS Pilani Hyderabad, Hyderabad - 500078 ,IN
  • Department of Mathematics, BITS Pilani Hyderabad, Hyderabad - 500078 ,IN

DOI:

https://doi.org/10.18311/jims/2024/32085

Keywords:

Weak Galerkin Finite Element Method, Weak Gradient, Posteriori Error Analysis, Semilinear Parabolic Problems, Fully Discrete Finite Element Approximation.

Abstract

This article presents a posteriori error analysis for the weak Galerkin finite element method based on the backward Euler approximation for semilinear parabolic problems in a bounded convex polygonal domain in R2 . An optimal order a posteriori error bound is obtained with respect to the L2 -norm in time and in the energy norm in space for the fully discrete backward Euler weak Galerkin finite element method for semilinear parabolic problems. We have exploited the elliptic reconstruction technique combined with the energy arguments to derive error bound. The source term is assumed to satisfy the Lipschitz condition. Numerical results are reported to validate the asymptotic behaviour of the derived error estimators.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-07-01

How to Cite

Anjali, P. V., Pal, A. K., & Sen Gupta, J. (2024). On a Posteriori Error Bound for Weak Galerkin Finite Element Method for Semilinear Parabolic Problems. The Journal of the Indian Mathematical Society, 91(3-4), 388–399. https://doi.org/10.18311/jims/2024/32085
Received 2022-12-01
Accepted 2023-10-03
Published 2024-07-01

 

References

A. Cangiani, E. H. Georgoulis, and M. Jensen, Discontinuous Galerkin methods for mass transfer through semipermeable membranes, SIAM J. Numer. Anal., 51 (2013), 2911-2934.

L. Chen, J. Wang, and X. Ye, A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, Journal of Scientific Computing, 59(2014), 496-511.

B. Deka, and P. Roy, Weak Galerkin finite element methods for parabolic interface problems with nonhomogeneous jump conditions, Numer. Funct. Anal. Optim., 40(2019), 259-279.

J. S. Gupta, and R. K. Sinha, A posteriori error analysis of semilinear parabolic interface problems using elliptic reconstruction, Appl. Anal., 97(2018), 552-570.

X. Hu, L. Mu, and X. Ye, A weak Galerkin finite element method for the Navier-Stokes equations, Journal of Computational and Applied Mathematics, 362(2019), 614-625.

O. Lakkis, and C. Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems, Math.Comp., 75(2006), 1627-1658.

Q. H. Li, and J. Wang, Weak Galerkin finite element methods for parabolic equations, Numer. Methods Partial Differential Equations, 29(2013), 2004-2024.

Y. Liu, Z. Guan, and Y. Nie, Unconditionally optimal error estimates of linearized weak Galerkin finite element method for semilinear parabolic equations, Adv. Comput. Math., 48(2022), Paper No. 47,22.

Y. Liu, and Y. Nie, A priori and a posteriori error estimates of the weak Galerkin finite element method for parabolic problems, Comput. Math. Appl., 99(2021), 73-83.

L. Mu, J. Wang, Y. Wang, and X. Ye A computational study of the weak Galerkin method for second-order elliptic equations,Numer. Algorithms, 63(2013), 753-777.

V. Thom´ee, Galerkin Finite Element Methods for Parabolic Problems, vol 25 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, second ed., 2006.

J. Wang, and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241(2013), 103-115.

S. Xie, P. Zhu, and X. Wang, Error analysis of weak Galerkin finite element methods for time-dependent convection-diffusion equations, Appl. Numer. Math., 137(2019), 19-33.

X. Ye, S. Zhang, and Z. Zhang, A new P1 weak Galerkin method for the biharmonic equation, J. Comput. Appl. Math., 364(2020), 1-10.

H. Zhang, Y.Zou, Y. Xu, Q.Zhai, and H. Yue, Weak Galerkin finite element method for second order parabolic equations, Int. J. Numer. Anal. Model., 13(2016), 525-544.