Ohno-Zagier Relation for Interpolated q-Multiple Zeta Values with Full Height

Jump To References Section

Authors

  • Department of Mathematics, University of North Bengal, Darjeeling -734013 West Bengal ,IN
  • Department of Mathematics, University of North Bengal, Darjeeling -734013 West Bengal ,IN

DOI:

https://doi.org/10.18311/jims/2024/33278

Keywords:

Interpolated q−Multiple Zeta Values (t − qMZVs), q−Multiple Zeta Star Values (q − MZSVs).

Abstract

An algebraic approach has been employed to prove the Ohno-Zagier relation for interpolated q−multiple zeta values with full height.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-07-01

How to Cite

Tamang, N., & Tamang, B. (2024). Ohno-Zagier Relation for Interpolated q-Multiple Zeta Values with Full Height. The Journal of the Indian Mathematical Society, 91(3-4), 499–510. https://doi.org/10.18311/jims/2024/33278
Received 2023-03-14
Accepted 2023-06-16
Published 2024-07-01

 

References

D. M. Bradley, Multiple q−zeta values, J. Algebra 283(2005) 752-798.

M. E. Hoffman, The algebra of multiple harmonic series, J. Algebra 194(2) (1997), 477-495.

M. E. Hoffman and Y. Ohno, Relations of multiple zeta values and their algebraic expression, J. Algebra 262(2) (2003), 332-347.

K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compos. Math. 142(2) (2006), 307-338.

Z. Li, Algebraic relations of interpolated multiple zeta values, J. Number Theory 240(2022), 439-470.

Z. Li, Regularized double shuffle and Ohno-Zagier relations of multiple zeta values, J. Number Theory 133(2013) 96-610.

Z. Li and C. Qin, Some relations of interpolated multiple zeta values, Intern. J. Math. 28(5) (2017), 1750033, 25 pp.

Z. Li and C. Qin, Some relations deduced from regularized double shuffle relations of multiple zeta values, Int. J. Number Theory, Vol. 17, No. 01, pp. 91-146 (2021).

Z. Li, N. Wakabayashi, Sum of interpolated multiple q−zeta values, J. Number Theory, 200 (2019) 205-259.

S. Muneta, On some explicit evaluation of multiple zeta-star values, J. Number Theory 128 (2008), 2538-2548.

J. Okuda and Y. Takeyama, On relations for the multiple q−zeta values, Ramanujan J. 14 (2007), 379-387.

Y. Ohno, D. Zagier, Multiple zeta values of fixed weight, depth, and height, Indag. Math. (N.S.) 12(4) (2001) 483-487.

T. Tanaka and N. Wakabayashi, Kawashima’s relations for interpolated multiple zeta values, J. Algebra 447 (2016), 424-431.

Y. Takeyama, q−analogue of non-strict multiple zeta values and basic hypergeometric series, Proc. Amer. Math. Soc. 137(9), 2997-3002 S 0002-9939(09)09931-6.

N. Wakabayashi, Double shuffle and Hoffman’s relations for interpolated multiple zeta values, Int. J. Number Theory 13(9) (2017), 2245-2251.

N. Wakabayashi, Interpolation of q-analog of multiple zeta and zeta star values, J. Number Theory, 174 (2017) 26-39.

S. Yamamoto, Interpolation of multiple zeta and zeta star values, J. Algebra 385 (2013), 102-114.