On the Absolute Norlund Summability of Double Fourier Series
DOI:
https://doi.org/10.18311/jims/2024/33311Keywords:
Absolute Norlund Summability, Function of Bounded Variation in the Sense Hardy, Double Fourier Series.Abstract
In this paper, we give sufficient conditions for the absolute N¨orlund summability of double Fourier series. In particular, we get sufficient conditions for the absolute Ces`aro summability of double Fourier series. We also give sufficient conditions for regularity in the sense of Hardy of N¨orlund summability for a double sequence.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Prince Bhuva, Dr. B. L. Ghodadra
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-08-17
Published 2024-07-01
References
L. S. Bosanquet, Note on the absolute summability (C) of a Fourier series, J. London Math. Soc., 11 (1), (1936), 11 - 15.
G. D. Dikshit, On the absolute N¨orlund summability of a Fourier series, Indian J. Math., 9 (1967), 331 - 342.
G. D. Dikshit, A note on the absolute N¨orlund summability of conjugate Fourier series, J. Austral. Math. Soc., 12 (1971), 86 - 90.
H. P. Dikshit, On the absolute N¨orlund summability of a Fourier series and its conjugate series, K¯odai Math. Sem. Rep., 20 (1968), 448 - 453.
B. L. Ghodadra and V. F¨ul¨op, On the convergence of double Fourier integrals of functions of bounded variation on R2 , Studia Sci. Math. Hungar., 53 (3), (2016), 289 - 313.
J. G. Herriot, N¨orlund summability of double Fourier series, Trans. Amer. Math. Soc., 52 (1942), 72 - 94.
B. V. Limaye and S. R. Ghorpade, A course in multivariable calculus and analysis, Springer, New york, Dordrecht Heidelberg, London, 2010.
F. M´oricz, Order of magnitude of double Fourier coefficients of functions of bounded variation, Analysis (Munich), 22 (4), (2002), 335 - 345.
F. M´oricz, On the convergence of double integrals and a generalized version of Fubini’s theorem on successive integration (English summary), Acta Sci. Math. (Szeged), 78 (3–4), (2012), 469 - 487.
L. McFadden, Absolute N¨orlund summability, Duke Math. J., 9 (1942), 168 - 207.
S. N. Maheshwari, On the absolute harmonic summability of a double series related to a double Fourier series, Boll. Un. Mat. Ital. (3), 16 (1961), 221 - 237.
H. K. Nigam and K. Sharma, On double summability of double conjugate Fourier series, Int. J. Math. Math. Sci., 2012, Art. ID 104592, 15 pp.
Walter Rudin, Principles of Mathematical Analysis, Second Edition, McGraw-Hill, Inc., 1964.
T. Pati, On the absolute N¨orlund summability of a Fourier series, J. London Math. Soc., 34 (1959), 153 - 160.
T. Pati, On the absolute summability of Fourier series by N¨orlund means, Math. Z., 88 (1965), 244 - 249.
A. J. White, On the restricted Ces`aro summability of double Fourier series, Trans. Amer. Math. Soc., 99 (1961), 308 - 319.
Si-Lei Wang, On the absolute N¨orlund summability of a Fourier series and its conjugate series, Acta Math. Sinica, 15 (1965), 559 - 573 (Chinese) and Chinese Math. (Translation of Acta Math. Sinica), 7 (1965), 281 - 295.
A. Zygmund, Trigonometric series, Third Edition, Vol. I and II combined, Cambridge University Press, 2002.