α-Fredholm Spectrum of Hilbert Space Operators

Jump To References Section

Authors

  • BUAP Rio Verde y Av. San Claudio San Manuel, Puebla, Pue. 72570 ,MX
  • BUAP Rio Verde y Av. San Claudio San Manuel, Puebla, Pue. 72570 ,MX

Keywords:

Fredholm Operators, α, -Fredholm Operators, -Fredholm Spectrum.

Abstract

The purpose of this article is present some properties of α-Fredholm operators. Also, the corresponding α-Fredholm spectrum of an operator is observed in view of regularities in the sense of V. Muller.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2016-12-01

How to Cite

Djordjevic, S. V., & Hernandez-Diaz, F. (2016). α-Fredholm Spectrum of Hilbert Space Operators. The Journal of the Indian Mathematical Society, 83(3-4), 241–249. Retrieved from https://informaticsjournals.co.in/index.php/jims/article/view/6607

 

References

S. C. Arora and P. Dharmarha, Weighted Weyl spectrum II, Bull. Korean Math. Soc., 43 (4), (2006), 715-722.

S. C. Arora and P. Dharmarha, Operators satisfying Reσα(T) = σα(Re(T)), Inter.J. Pure Appl. Math., Bulgaria, 2 (2007), 197-202.

S. C. Arora and P. Dharmarha, On join weighted spectrum, Bull. Cal. Math. Soc., 99 (5),(2007), 539-546.

S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, Inc. New York, 1974.

P. Dharmarha, A Study of Weighted Weyl Spectra of Operators, PhD. thesis, Department of Mathematics University of Delhi, India, 2009.

P. Dharmarha, Weighted Weyl spectrum, Ganita, 58(1), (2007), 67-74.

G. Edgar, J. Ernest and S. G. Lee, Weighing operator spectra, Indiana Univ. Math. J., 21 (1), (1972), 61-80.

J. Ernest, Left invertibility of closed operators modulo an -compact operator, Tˆohoku Math. Journ., 24(1972), 529-537.

V. Kordula and V. Muller, emph On the axiomatic theory of spectrum, Studia Math. 119, (1996), 109-128.

V. Muller, Spectral Theory of Linear Operators: and Spectral Systems in Banach Algebras, (Operator Theory: Advances and Applications, 139), Birkhauser Basel, 2007.

M. Schechter, Principles of Functional Analysis, Academic Press, Inc. USA, 1971.

C. S. Weitz, Regularities in Banach Algebras, U niversity of Johannesburg, Johannesburg, 2008.

B. S. Yadav and S. C. Arora, A generalization of Weyl Spectrum, Glasnik Mathematici, 15( 35), (1980), 315-319.