On a Restricted Divisor Problem
Keywords:
The Dirichlet Divisor Problem, Mean Square, Chowla and Walum's Expression.Abstract
Let 0 < α < 1/2 and let dα(n) be the number of positive divisors k of n such that nα ≤ k ≤ n1-α, which we call a restricted divisor function. In the case α = 1/N (N ∈ N) we derive an asymptotic representation of Σn≤xdα(n). Furthermore we study the mean square of Pα(x) = Σl≤xαφ (x/l), which seems to be a natural object in the case of a restricted divisor problem.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Jun Furuya, Makoto Minamide, Yoshio Tanigawa
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
M. Aoki and M. Minamide, A zero density estimate for the derivatives of the Riemann zeta function JANTA 2 (2012), 361-375.
X. Cao, Y. Tanigawa and W. Zhai, On a conjecture of Chowla and Walum, Sci. China Math. 53 (2010), 2755-2771.
H. Cramer, Uber zwei Satze des Herrn G. H. Hardy, Math. Z. 15 (1922), 201-210.
J. Furuya, M. Minamide and Y. Tanigawa, Representations and evaluations of the error term in a certain divisor problem, to appear in Math. Slovaca.
S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge Univ. Press, 1991.
R. R. Hall, The behaviour of the Riemann zeta-function on the critical line, Mathematika 46 (1999), 281-313.
D. R. Heath-Brown, The Pjatecki-Sapiro prime number theorem, J. Number Theory 16 (1983), 242-266.
M. N. Huxley, Exponential sums and lattice points III Proc. London Math. Soc. 87 (2003), 591-609.
A. Ivic, The Riemann Zeta-Function, John Wiley & Sons, New York, 1985.
C.H. Jia and A. Sankaranarayanan, The mean square of divisor function, Acta Arith. 164 (2014), 181-208.
A. A. Karatsuba and S. M. Voronin, The Riemann Zeta-Function, Walter de Gruyter, New York, 1992.
Y.K. Lau and K.M. Tsang, On the mean square formula of the error term in the Dirichlet divisor problem, Math. Proc. Camb. Phil. Soc. 146 (2009), 277-287.
M. Minamide, The truncated Vorono formula for the derivative of the Riemann zeta function, Indian J. Math. 55 (2013), 325-352.
S. Ramanujan, Some formul in the analytic theory of numbers, Messenger of Math. 45 (1916), 81-84.
E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2-nd ed. rev. by D. R. Heath-Brown, Oxford Univ. Press, 1986.
K.C. Tong, On divisor problems (III), Acta Math. Sinica 6 (1956), 515-541.
B. M. Wilson, Proofs of some formul enunciated by Ramanujan, Proc. London Math. Soc. 21 (1922), 235-255.