On a Restricted Divisor Problem

Jump To References Section

Authors

  • Department of Integrated Human Sciences (Mathematics), Hamamatsu University School of Medicine, Handayama 1-20-1, Hamamatsu, Shizuoka, 431-3192 ,JP
  • Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512 ,JP
  • Graduate School of Mathematics, Nagoya University, Furo-Cho, Nagoya, 464-8602 ,JP

Keywords:

The Dirichlet Divisor Problem, Mean Square, Chowla and Walum's Expression.

Abstract

Let 0 < α < 1/2 and let dα(n) be the number of positive divisors k of n such that nα ≤ k ≤ n1-α, which we call a restricted divisor function. In the case α = 1/N (N ∈ N) we derive an asymptotic representation of Σn≤xdα(n). Furthermore we study the mean square of Pα(x) = Σl≤xαφ (x/l), which seems to be a natural object in the case of a restricted divisor problem.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2016-12-01

How to Cite

Furuya, J., Minamide, M., & Tanigawa, Y. (2016). On a Restricted Divisor Problem. The Journal of the Indian Mathematical Society, 83(3-4), 269–287. Retrieved from https://informaticsjournals.co.in/index.php/jims/article/view/6609

 

References

M. Aoki and M. Minamide, A zero density estimate for the derivatives of the Riemann zeta function JANTA 2 (2012), 361-375.

X. Cao, Y. Tanigawa and W. Zhai, On a conjecture of Chowla and Walum, Sci. China Math. 53 (2010), 2755-2771.

H. Cramer, Uber zwei Satze des Herrn G. H. Hardy, Math. Z. 15 (1922), 201-210.

J. Furuya, M. Minamide and Y. Tanigawa, Representations and evaluations of the error term in a certain divisor problem, to appear in Math. Slovaca.

S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge Univ. Press, 1991.

R. R. Hall, The behaviour of the Riemann zeta-function on the critical line, Mathematika 46 (1999), 281-313.

D. R. Heath-Brown, The Pjatecki-Sapiro prime number theorem, J. Number Theory 16 (1983), 242-266.

M. N. Huxley, Exponential sums and lattice points III Proc. London Math. Soc. 87 (2003), 591-609.

A. Ivic, The Riemann Zeta-Function, John Wiley & Sons, New York, 1985.

C.H. Jia and A. Sankaranarayanan, The mean square of divisor function, Acta Arith. 164 (2014), 181-208.

A. A. Karatsuba and S. M. Voronin, The Riemann Zeta-Function, Walter de Gruyter, New York, 1992.

Y.K. Lau and K.M. Tsang, On the mean square formula of the error term in the Dirichlet divisor problem, Math. Proc. Camb. Phil. Soc. 146 (2009), 277-287.

M. Minamide, The truncated Vorono formula for the derivative of the Riemann zeta function, Indian J. Math. 55 (2013), 325-352.

S. Ramanujan, Some formul in the analytic theory of numbers, Messenger of Math. 45 (1916), 81-84.

E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2-nd ed. rev. by D. R. Heath-Brown, Oxford Univ. Press, 1986.

K.C. Tong, On divisor problems (III), Acta Math. Sinica 6 (1956), 515-541.

B. M. Wilson, Proofs of some formul enunciated by Ramanujan, Proc. London Math. Soc. 21 (1922), 235-255.