Grain Growth Inhibition by Second Phase Particles : A Two-Dimensional Monte Carlo Computational Study

Jump To References Section

Authors

  • Department of Mechanical Engineering, Ramaiah Institute of Technology, MSR Nagar, MSRIT Post Bengaluru, Karnataka 560054 ,IN
  • Department of Mechanical Engineering, Ramaiah Institute of Technology, MSR Nagar, MSRIT Post Bengaluru, Karnataka 560054 ,IN
  • Department of Mechanical Engineering, Ramaiah Institute of Technology, MSR Nagar, MSRIT Post Bengaluru, Karnataka 560054 ,IN
  • Aircraft Research and Design Centre HAL, Bengaluru, Karnataka 560037 ,IN
  • Department of Mechanical Engineering, Siddaganga Institute of Technology, Tumkur, Karnataka 572103 ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/31059

Keywords:

Q-States, Second Phase Particles, Matrix Size, Grain Size Distribution, Zener Limit, and Scaling Constant.

Abstract

A comprehensive 2-D simulation was performed on a square lattice under the influence of a second phase particle to validate the Zener limit. The effect of matrix sizes from 100 to 10,000 was examined on R(lim), R(max), Scaling constant(k), and impurities lying on the grain boundaries(ϕ). In addition, the optimum matrix size N=2000 under various second phase particles and Q states were investigated. The particle-pinned regimes developed a unique relationship between the Zener limit and the fraction of second phase particles resting on the grain boundary, i.e., R(limit)=1/eΦ It was observed that the particle fraction is proportional to the determined limiting grain size. The homogeneity and distribution of grains were observed to obey the lognormal behavior.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-03-15

How to Cite

Rajendra, P., Phaneesh, K. R., Ramesha, C. M., Nagaral, M., & Auradi, V. (2023). Grain Growth Inhibition by Second Phase Particles : A Two-Dimensional Monte Carlo Computational Study. Journal of Mines, Metals and Fuels, 70(10A), 97–103. https://doi.org/10.18311/jmmf/2022/31059

 

References

Smith, C. S. (1948): Grains, phases, and interfaces: An introduction of microstructure. Trans. Metall. Soc. AIME, 175, 15-51.

Srolovitz, D. J., Anderson, M. P., Grest, G. S., & Sahni, P. S. (1984): Computer simulation of grain growth-III. Influence of a particle dispersion. Acta metallurgica, 32(9), 1429-1438. DOI: https://doi.org/10.1016/0001-6160(84)90089-0

Doherty, R. D., Srolovitz, D. J., Rollett, A. D., & Anderson, M. P. (1987): On the volume fraction dependence of particle limited grain growth. Scr. Metall.; (United States), 21(5). DOI: https://doi.org/10.1016/0036-9748(87)90383-8

Hazzledine, P. M., & Oldershaw, R. D. J. (1990): Computer simulation of Zener pinning. Philosophical Magazine A, 61(4), 579-589. DOI: https://doi.org/10.1080/01418619008231936

Hassold, G. N., Holm, E. A., & Srolovitz, D. J. (1990): Effects of particle size on inhibited grain growth. DOI: https://doi.org/10.1016/0956-716X(90)90574-Z

Gao, J., Thompson, R. G., & Patterson, B. R. (1997): Computer simulation of grain growth with second phase particle pinning. Acta Materialia, 45(9), 3653-3658. DOI: https://doi.org/10.1016/S1359-6454(97)00048-7

Kad, B. K., & Hazzledine, P. M. (1997): Monte Carlo simulations of grain growth and Zener pinning. Materials Science and Engineering: A, 238(1), 70-77. DOI: https://doi.org/10.1016/S0921-5093(97)00435-8

Soucail, M., Messina, R., Cosnuau, A., & Kubin, L. P. (1999): Monte Carlo simulation of Zener pinning in two dimensions. Materials Science and Engineering: A, 271(1-2), 1-7. DOI: https://doi.org/10.1016/S0921-5093(99)00196-3

Zhang, Z., Wu, Q., Grujicic, M., & Wan, Z. Y. (2016): Monte Carlo simulation of grain growth and welding zones in friction stir welding of AA6082-T6. Journal of Materials Science, 51(4), 1882-1895. DOI: https://doi.org/10.1007/s10853-015-9495-x

Srolovitz, D. J., Anderson, M. P., Sahni, P. S., & Grest, G. S. (1984): Computer simulation of grain growth—II. Grain size distribution, topology, and local dynamics. Acta metallurgica, 32(5), 793-802. DOI: https://doi.org/10.1016/0001-6160(84)90152-4

Anderson, M. P., Srolovitz, D. J., Grest, G. S., & Sahni, P. S. (1984): Computer simulation of grain growth–I. Kinetics. Acta metallurgica, 32(5), 783-791. DOI: https://doi.org/10.1016/0001-6160(84)90151-2

Rollett, A. D., Srolovitz, D. J., Anderson, M. P., & Doherty, R. D. (1992). Computer simulation of recrystallization-III. Influence of a dispersion of fine particles. Acta metallurgica et materialia, 40(12), 3475-3495. DOI: https://doi.org/10.1016/0956-7151(92)90062-J

Miodownik, M., Holm, E. A., & Hassold, G. N. (2000): Highly parallel computer simulations of particle pinning: Zener vindicated. Scripta materialia, 42(12), 1173-1177. DOI: https://doi.org/10.1016/S1359-6462(00)00354-7

Stearns, L. C., & Harmer, M. P. (1996): Particle Inhibited Grain Growth in AI2O3 SiC: I, Experimental Results. Journal of the American Ceramic Society, 79(12), 3013-3019. DOI: https://doi.org/10.1111/j.1151-2916.1996.tb08071.x

Stearns, L. C., & Harmer, M. P. (1996): Particle Inhibited Grain Growth in Al2O3 SiC: II, Equilibrium and Kinetic Analyses. Journal of the American Ceramic Society, 79(12), 3020-3028. DOI: https://doi.org/10.1111/j.1151-2916.1996.tb08072.x

Mohseni, M., Eivani, A. R., Vafaeenezhad, H., Jafarian, H. R., Salehi, M. T., & Zhou, J. (2021): An experimental and theoretical investigation of the effect of second-phase particles on grain growth during the annealing of hot-rolled AZ61 magnesium alloy. Journal of materials research and technology, 15, 3585-3597. DOI: https://doi.org/10.1016/j.jmrt.2021.09.049