A Short Review on the Photocatalytic Applications of the Luminescent Carbon Dots

Jump To References Section

Authors

  • Department of Chemistry, M S Ramaiah Institute of Technology (An autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi) Bengaluru-560054 ,IN
  • Department of Chemistry, M S Ramaiah Institute of Technology (An autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru – 560054, Karnataka ,IN
  • Department of Chemical Engineering, M S Ramaiah Institute of Technology (An autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru - 560054, Karnataka ,IN
  • Department of Chemistry, M S Ramaiah Institute of Technology (An autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru – 560054, Karnataka ,IN
  • Department of Chemistry, M S Ramaiah Institute of Technology (An autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru – 560054, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/43607

Keywords:

Carbon Dots, Dye Degradation, Green Synthesis, Hydrogen Generation, Photocatalysis.

Abstract

Nano carbon dots are a recently added class of carbon nanomaterials specifically with size less than 10 nm possessing unique electronic and optical properties. A wide array of green sources available for the synthesis of carbon dots along with its diverse applications makes them an interesting material of the decade. Conventional semiconductor nanoparticles endowed with the ability to create electron-hole pairs have been widely used for the photocatalytic applications irrespective of their limitation to restrict electron-hole recombination. Carbon dots (C-dots) which are biocompatible and possessing excellent electron acceptor/donor capability is a promising candidate to improve the photocatalytic efficiency of metal chalcogenide semiconductor nanoparticles. In this short review, a thorough survey of the utilisation of C-dots as a supporting entity for the various metal oxides and metal sulphides to be applied for advanced techniques such as photocatalytic wastewater treatment, hydrogen generation via water splitting and photocatalytic reduction of CO2 has been summarised.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-05-24

How to Cite

Kottam, N., Smrithi, S. P., Madhu, G. M., Gurushantha, K., & Sampath, C. (2024). A Short Review on the Photocatalytic Applications of the Luminescent Carbon Dots. Journal of Mines, Metals and Fuels, 71(12A), 410–420. https://doi.org/10.18311/jmmf/2023/43607

Issue

Section

Articles

 

References

Georgakilas V, Perman JA, Tucek J, Zboril R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev. 2015; 115(11):4744-822. https://doi.org/10.1021/cr500304f DOI: https://doi.org/10.1021/cr500304f

Namdari P, Negahdari B, Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed Pharmacother. 2017; 87:209-22. https://doi.org/10.1016/j.biopha.2016.12.108 DOI: https://doi.org/10.1016/j.biopha.2016.12.108

Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004; 126(40):12736-7. https://doi.org/10.1021/ja040082h DOI: https://doi.org/10.1021/ja040082h

Sun YP, Zhou B, Lin Y, Wang W, Fernando KS, Pathak P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006; 128(24):7756- 7. https://doi.org/10.1021/ja062677d DOI: https://doi.org/10.1021/ja062677d

Mishra V, Patil A, Thakur S, Kesharwani P. Carbon dots: emerging theranostic nanoarchitectures. Drug Discov Today. 2018; 23(6):1219-32. https://doi.org/10.1016/j. drudis.2018.01.006 DOI: https://doi.org/10.1016/j.drudis.2018.01.006

Xiao L, Sun H. Novel properties and applications of carbon nanodots. Nanoscale Horiz. 2018; 3(6):565-97. https://doi. org/10.1039/C8NH00106E DOI: https://doi.org/10.1039/C8NH00106E

Wu H, Mi C, Huang H, Han B, Li J, Xu S. Solvothermal synthesis of green-fluorescent carbon nanoparticles and their application. J Lumin. 2012; 132(6):1603-7. https://doi. org/10.1016/j.jlumin.2011.12.077 DOI: https://doi.org/10.1016/j.jlumin.2011.12.077

Bhunia SK, Pradhan N, Jana NR. Vitamin B1 derived blue and green, fluorescent carbon nanoparticles for cell-imaging application. ACS Appl Mater Interfaces. 2014; 6(10):7672- 9. https://doi.org/10.1021/am500964d DOI: https://doi.org/10.1021/am500964d

Hsu PC, Chang HT. Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem Commun. 2012; 48(33):3984-6. https://doi. org/10.1039/c2cc30188a DOI: https://doi.org/10.1039/c2cc30188a

Zhang J, Yu SH. Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today. 2016; 19(7):382-93. https:// doi.org/10.1016/j.mattod.2015.11.008 DOI: https://doi.org/10.1016/j.mattod.2015.11.008

Tuerhong M, Yang XU, Xue-Bo YIN. Review on carbon dots and their applications. Chinese J Anal Chem. 2017; 45(1):139-50. https://doi.org/10.1016/S1872- 2040(16)60990-8 DOI: https://doi.org/10.1016/S1872-2040(16)60990-8

Lai CW, Hsiao YH, Peng YK, Chou PT. Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. J Mater Chem. 2012; 22(29):14403-9. https://doi.org/10.1039/c2jm32206d DOI: https://doi.org/10.1039/c2jm32206d

Ding H, Du F, Liu P, Chen Z, Shen J. DNA–carbon dots function as fluorescent vehicles for drug delivery. ACS Appl. Mater Interfaces. 2015; 7(12):6889-97. https://doi. org/10.1021/acsami.5b00628 DOI: https://doi.org/10.1021/acsami.5b00628

Devendra BK, Praveen BM., Tripathi VS, Nagaraju G, Nayana KO, Nagaraju DH Platinum Coatings on SS304: Photocatalytic Dye Degradation Application. Iran J Sci Technol Trans A: Sci. 2022; 46(1):137-45. https://doi. org/10.1007/s40995-021-01250-w DOI: https://doi.org/10.1007/s40995-021-01250-w

Devendra BK, Praveen BM, Tripathi VS, Nagaraju G, Nagaraju DH, Nayana KO. Highly Corrosion Resistant Platinum-Rhodium alloy coating and its photocatalytic activity. Inorg Chem Commun. 2021; 134:109065. https:// doi.org/10.1016/j.inoche.2021.109065 DOI: https://doi.org/10.1016/j.inoche.2021.109065

Devendra BK, Praveen BM, Tripathi VS, Nagaraju G, Prasanna BM, Shashank M. Development of rhodium coatings by electrodeposition for photocatalytic dye degradation. Vacuum. 2022; 205:111460. https://doi. org/10.1016/j.vacuum.2022.111460 DOI: https://doi.org/10.1016/j.vacuum.2022.111460

Smrithi SP, Kottam N, Narula A, Madhu GM, Mohammed R, Agilan R. Carbon dots decorated cadmium sulphide heterojunction-nanospheres for the enhanced visible light driven photocatalytic dye degradation and hydrogen generation. J Colloid Interface Sci. 2022; 627:956-68. https:// doi.org/10.1016/j.jcis.2022.07.100 DOI: https://doi.org/10.1016/j.jcis.2022.07.100

Smrithi SP, Kottam N, Vergis BR. Heteroatom modified hybrid carbon quantum dots derived from Cucurbita pepo for the visible light driven photocatalytic dye degradation. Top Catal. 2022; 1-12. https://doi.org/10.1007/ s11244-022-01581-x DOI: https://doi.org/10.1007/s11244-022-01581-x

Smrithi SP, Kottam N, Arpitha V, Narula A, Anilkumar GN, Subramanian KRV. Tungsten oxide modified with carbon nanodots: integrating adsorptive and photocatalytic functionalities for water remediation. J Sci Adv Mater Dev. 2020; 5(1):73-83. https://doi.org/10.1016/j. jsamd.2020.02.005 DOI: https://doi.org/10.1016/j.jsamd.2020.02.005

Devendra BK, Praveen BM, Tripathi VS, Nagaraju DH, Nayana KO. Hydrogen evolution reaction by platinum coating. Iran J Sci Technol Trans A: Sci. 2021; 45(6):1993- 2000. https://doi.org/10.1007/s40995-021-01220-2 DOI: https://doi.org/10.1007/s40995-021-01220-2

Devendra BK, Praveen BM, Tripathi VS, Nagaraju DH, Nayana KO. Pt–Rh alloy catalysts for hydrogen generation developed by direct current/pulse current method. J Iranian Chem Soc. 2022; 19(5):1913-22. https://doi.org/10.1007/ s13738-021-02433-3 DOI: https://doi.org/10.1007/s13738-021-02433-3

Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972; 238(5358):37- 8. https://doi.org/10.1038/238037a0 DOI: https://doi.org/10.1038/238037a0

Mahanthappa M, Kottam N, Yellappa S. Enhanced photocatalytic degradation of methylene blue dye using CuSCdS nanocomposite under visible light irradiation. Appl Surf Sci. 2019; 475:828-38. https://doi.org/10.1016/j. apsusc.2018.12.178 DOI: https://doi.org/10.1016/j.apsusc.2018.12.178

Gurushantha K, Kottam N, Smrithi SP, Dharmaprakash MS, Keshavamurthy K, Meena S, Srinatha N, Visible Light Active WO3/TiO2 Heterojunction Nanomaterials for Electrochemical Sensor, Capacitance and Photocatalytic Applications. Cat Lett. 2023; 1-12 https://doi.org/10.1007/ s10562-023-04362-7

Kottam N, Smrithi SP. Luminescent carbon nanodots: current prospects on synthesis, properties and sensing applications. Methods Appl Fluoresc. 2021; 9(1):012001. https://doi.org/10.1088/2050-6120/abc008 DOI: https://doi.org/10.1088/2050-6120/abc008

Zhao L, Baccile N, Gross S, Zhang Y, Wei W, Sun Y, Titirici MM, et al. Sustainable nitrogen-doped carbonaceous materials from biomass derivatives. Carbon. 2010; 48(13):3778-87. https://doi.org/10.1016/j.carbon. 2010.06.040 DOI: https://doi.org/10.1016/j.carbon.2010.06.040

Liu S, Tian J, Wang L, Zhang Y, Qin X, Luo Y, Sun X, et al. Hydrothermal treatment of grass: a low‐cost, green route to nitrogen‐doped, carbon‐rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label‐free detection of Cu (II) ions. AdvMater. 2012; 24(15):2037-41. https://doi.org/10.1002/ adma.201200164 DOI: https://doi.org/10.1002/adma.201200164

Hsu PC, Shih ZY, Lee CH, Chang HT. Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chem. 2012; 14(4):917-20. https://doi. org/10.1039/c2gc16451e DOI: https://doi.org/10.1039/c2gc16451e

Liu Y, Zhao Y, Zhang Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper (II) ion detection. Sens Actuators B: Chem. 2014; 196:647-52. https://doi.org/10.1016/j.snb.2014.02.053 DOI: https://doi.org/10.1016/j.snb.2014.02.053

Li CL. Ou CM, Huang CC, Wu WC, Chen YP, Lin TE, Chang HT. Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. J Mater Chem B. 2014; 2(28):4564-71. https://doi. org/10.1039/c4tb00216d DOI: https://doi.org/10.1039/c4tb00216d

De B, Karak N. A green and facile approach for the synthesis of water-soluble fluorescent carbon dots from banana juice. RSC Adv. 2013; 3(22):8286-90. https://doi. org/10.1039/c3ra00088e DOI: https://doi.org/10.1039/c3ra00088e

Varisco M, Zufferey D, Ruggi A, Zhang Y, Erni R, Mamula O. Synthesis of hydrophilic and hydrophobic carbon quantum dots from waste of wine fermentation. Royal Soc. Open Sci. 2017; 4(12):170900. https://doi.org/10.1098/ rsos.170900 DOI: https://doi.org/10.1098/rsos.170900

Venkateswarlu S, Viswanath B, Reddy AS, Yoon M. Fungus-derived photoluminescent carbon nanodots for ultrasensitive detection of Hg2+ ions and photoinduced bactericidal activity. Sens Actuators B: Chem. 2018; 258:172-83. https://doi.org/10.1016/j.snb.2017.11.044 DOI: https://doi.org/10.1016/j.snb.2017.11.044

Liu R, Zhang H, Liu S, Zhang X, Wu T, Ge X, Wang G. Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction. PCCP. 2016; 18(5):4095-101. https://doi.org/10.1039/ C5CP06970J DOI: https://doi.org/10.1039/C5CP06970J

Zhang J, Yuan Y, Liang G, Yu SH. Scale‐up synthesis of fragrant nitrogen‐doped carbon dots from bee pollens for bioimaging and catalysis. Adv Sci. 2015; 2(4):1500002. https://doi.org/10.1002/advs.201500002 DOI: https://doi.org/10.1002/advs.201500002

Alam AM, Park BY, Ghouri ZK, Park M, Kim HY. Synthesis of carbon quantum dots from cabbage with down-and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chem. 2015; 17(7):3791-7. https://doi.org/10.1039/C5GC00686D DOI: https://doi.org/10.1039/C5GC00686D

Guo Y, Zhang L, Cao F, Leng Y. Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+. Sci Rep. 2016; 6(1):1-7. https://doi.org/10.1038/srep35795 DOI: https://doi.org/10.1038/srep35795

Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Dou Y. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens Bioelectron. 2014; 60:292-8. https://doi.org/10.1016/j.bios.2014.04.046

Tan M, Zhang L, Tang R, Song X, Li Y, Wu, Ma X. Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source. Talanta. 2013; 115:950-6. https://doi.org/10.1016/j.talanta.2013.06.061

Mehta VN, Jha S, Singhal RK, Kailasa, SK. Preparation of multicolor emitting carbon dots for HeLa cell imaging. New J Chem. 2014; 38(12):6152-60. https://doi.org/10.1039/ C4NJ00840E

Zhu C, Zhai J, Dong S. Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem Commun. 2012; 48(75):9367-9. https://doi.org/10.1039/ c2cc33844k

Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Biores Technol. 2014; 152:292-8. https://doi.org/10.1016/j. biortech.2013.10.092 DOI: https://doi.org/10.1016/j.biortech.2013.10.092

Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Dou Y. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens Bioelectron. 2014; 60:292-8. https://doi.org/10.1016/j.bios.2014.04.046 DOI: https://doi.org/10.1016/j.bios.2014.04.046

Tan M, Zhang L, Tang R, Song X, Li Y, Wu H, Ma X. Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source. Talanta. 2013; 115:950-6. https://doi.org/10.1016/j. talanta.2013.06.061 DOI: https://doi.org/10.1016/j.talanta.2013.06.061

Mehta VN, Jha S, Singhal RK, Kailasa SK. Preparation of multicolor emitting carbon dots for HeLa cell imaging. New J Chem. 2014; 38(12):6152-60. https://doi.org/10.1039/ C4NJ00840E DOI: https://doi.org/10.1039/C4NJ00840E

Zhu C, Zhai J, Dong S. Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem Commun. 2012; 48(75):9367-9. https://doi.org/10.1039/ c2cc33844k DOI: https://doi.org/10.1039/c2cc33844k

Qin X, Lu W, Asiri AM, Al-Youbi AO, Sun X. Green, low-cost synthesis of photoluminescent carbon dots by hydrothermal treatment of willow bark and their application as an effective photocatalyst for fabricating Au nanoparticles–reduced graphene oxide nanocomposites for glucose detection. Catal Sci and Technol. 2013; 3(4):1027- 35. https://doi.org/10.1039/c2cy20635h DOI: https://doi.org/10.1039/c2cy20635h

Yin B, Deng J, Peng X, Long Q, Zhao J, Lu Q, Yao S. Green synthesis of carbon dots with down-and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst. 2013; 138(21):6551-7. https://doi.org/10.1039/c3an01003a DOI: https://doi.org/10.1039/c3an01003a

Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lee ST. Watersoluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed. 2010; 49(26):4430-4. https:// doi.org/10.1002/anie.200906154 DOI: https://doi.org/10.1002/anie.200906154

Hou J, Dong G, Tian Z, Lu J, Wang Q, Ai S. A sensitive fluorescent sensor for selective determination of dichlorvos based on the recovered fluorescence of carbon dots-Cu (II) system. Food Chem. 2016; 202:81–7. https:// doi.org/10.1016/j.foodchem.2015.11.134 DOI: https://doi.org/10.1016/j.foodchem.2015.11.134

Kottam N, Vergis BR, Nagabhushana BM. An excellent photocatalytic efficiency of ZnO under visible light for fast removal of organic pollutant from aqueous solution. Mater Tod Proceed. 2018; 5(10):20849-57. https://doi. org/10.1016/j.matpr.2018.06.471 DOI: https://doi.org/10.1016/j.matpr.2018.06.471

Shinde SS, Bhosale CH, Rajpure KY. Photodegradation of organic pollutants using N-titanium oxide catalyst. J Photochem Photobiol B: Biol. 2014; 141:186–91. https:// doi.org/10.1016/j.jphotobiol.2014.09.017 DOI: https://doi.org/10.1016/j.jphotobiol.2014.09.017

Perathoner S, Ampelli C, Chen S, Passalacqua R, Su D, Centi G. Photoactive materials based on semiconducting nanocarbons–a challenge opening new possibilities for photocatalysis. J Energy Chem. 2017; 26(2):207-18. https:// doi.org/10.1016/j.jechem.2017.01.005 DOI: https://doi.org/10.1016/j.jechem.2017.01.005

Edison TNJI, Atchudan R, Sethuraman MG, Shim JJ, Lee YR. Microwave assisted green synthesis of fluorescent N-doped carbon dots: cytotoxicity and bio-imaging applications. J Photochem Photobiol B: Biol. 2016; 161:154-61. https://doi.org/10.1016/j.jphotobiol.2016.05.017 DOI: https://doi.org/10.1016/j.jphotobiol.2016.05.017

Li H, Li F, Wang G, Sun H. One step synthesis of fluorescent carbon nanoparticles for degradation of naphthol green under visible light. J Lumin. 2014; 156:36-40. https://doi. org/10.1016/j.jlumin.2014.07.007 DOI: https://doi.org/10.1016/j.jlumin.2014.07.007

Duarah R, Karak N. Facile and ultrafast green approach to synthesize biobased luminescent reduced carbon nanodot: an efficient photocatalyst. ACS Sustain Chem Eng. 2017; 5(10):9454-66. https://doi.org/10.1021/ acssuschemeng.7b02590 DOI: https://doi.org/10.1021/acssuschemeng.7b02590

Saud PS, Pant B, Alam AM, Ghouri ZK, Park M, Kim HY. Carbon quantum dots anchored TiO2 nanofibers: Effective photocatalyst for wastewater treatment. Ceram Int. 2015; 41(9):11953-9. https://doi.org/10.1016/j.ceramint.2015.06.007 DOI: https://doi.org/10.1016/j.ceramint.2015.06.007

Ke J, Li X, Zhao Q, Liu B, Liu S, Wang S. Up conversion carbon quantum dots as visible light responsive component for efficient enhancement of photocatalytic performance. J Colloid Interface Sci. 2017; 496:425-33. https://doi. org/10.1016/j.jcis.2017.01.121 DOI: https://doi.org/10.1016/j.jcis.2017.01.121

Bosetein H, Wang Q, Barras A, Li M, Hadjersi T, Szunerits S, Boukherroub R. Green chemistry approach for the synthesis of ZnO-carbon dots nanocomposites with good photocatalytic properties under visible light. J Colloid Interface Sci. 2016; 465:286-94. https://doi.org/10.1016/j.jcis.2015.12.001 DOI: https://doi.org/10.1016/j.jcis.2015.12.001

Omer KM, Mohammad NN, Baban SO, Hassan AQ. Carbon nanodots as efficient photosensitizers to enhance visible light driven photocatalytic activity. J Photochem Photobiol A: Chem. 2018; 364:53-8. https://doi.org/10.1016/j.jphotochem. 2018.05.041 DOI: https://doi.org/10.1016/j.jphotochem.2018.05.041

Tahir MB, Sagir M. Carbon nanodots and rare metals (RM = La, Gd, Er) doped tungsten oxide nanostructures for photocatalytic dyes degradation and hydrogen production. Sep Purif Technol. 2019; 209:94-102. https://doi.org/10.1016/j. seppur.2018.07.029 DOI: https://doi.org/10.1016/j.seppur.2018.07.029

Li H, Liu R, Liu Y, Huang H, Yu H, Ming H, Kang Z. Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. J Mater Chem. 2012; 22(34):17470- 5. https://doi.org/10.1039/c2jm32827e DOI: https://doi.org/10.1039/c2jm32827e

Archana B, Kottam N, Smrithi SP, Sekhar KBC. Fabrication of 2D+ 1D nanoarchitecture for transition metal oxide modified CdS nanorods: A comparative study on their photocatalytic hydrogen-generation efficiency. Nanotechnology. 2023; 34(44):445402. https://doi. org/10.1088/1361-6528/acec50 DOI: https://doi.org/10.1088/1361-6528/acec50

Sun AC. Synthesis of magnetic carbon nanodots for recyclable photocatalytic degradation of organic compounds in visible light. Adv Powder Technol. 2018; 29(3):719-25. https://doi.org/10.1016/j.apt.2017.12.013 DOI: https://doi.org/10.1016/j.apt.2017.12.013

Qin J, Zeng H. Photocatalysts fabricated by depositing plasmonic Ag nanoparticles on carbon quantum dots/graphitic carbon nitride for broad spectrum photocatalytic hydrogen generation. Appl Catal B: Environ. 2017; 209:161-73. https://doi.org/10.1016/j.apcatb.2017.03.005 DOI: https://doi.org/10.1016/j.apcatb.2017.03.005

Wu X, Zhao J, Guo S, Wang L, Shi W, Huang H, Liu Y, Kang Z. Carbon dots and BiVO4 quantum dots composite for overall water splitting via two-electron pathway. Nanoscale B. 2016; 8(39):17314-21. https://doi.org/10.1039/C6NR05864G DOI: https://doi.org/10.1039/C6NR05864G

Ye KH, Wang Z, Gu J, Xiao S, Yuan Y, Zhu Y, Yang S. Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy Environ Sci. 2017; 10(3):772-9. https://doi.org/10.1039/C6EE03442J DOI: https://doi.org/10.1039/C6EE03442J

Wang J, Gao M, Ho GW. Bidentate-complex-derived TiO₂/ carbon dot photocatalysts: in situ synthesis, versatile heterostructures, and enhanced H₂ evolution. J Mater Chem A. 2014; 2:5703-9. https://doi.org/10.1039/c3ta15114j DOI: https://doi.org/10.1039/c3ta15114j

Tjandra AD, Huang J. Photocatalytic carbon dioxide reduction by photocatalyst innovation. Chinese Chem Lett. 2018; 29(6):734-46. https://doi.org/10.1016/j.cclet.2018.03.017 DOI: https://doi.org/10.1016/j.cclet.2018.03.017

Suzuki TM, Yoshino S, Takayama T, Iwase A, Kudo A, Morikawa T. Z-Schematic and visible-light-driven CO₂ reduction using H₂O as an electron donor by a particulate mixture of a Ru-complex/(CuGa) 1- xZn₂xS₂ hybrid catalyst, BiVO₄ and an electron mediator. Chem Commun. 2018; 54:10199-202. https://doi.org/10.1039/C8CC05505J DOI: https://doi.org/10.1039/C8CC05505J

Kong XY, Tan WL, Ng BJ, Chai SP, Mohamed AR. Harnessing Vis–NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2WO6 nanosheets. Nano Res. 2017; 10(5):1720-31. https://doi.org/10.1007/s12274-017-1435-4 DOI: https://doi.org/10.1007/s12274-017-1435-4

Most read articles by the same author(s)