State-of-the-Art Cooling Solutions for Electronic Devices Operating in Harsh Conditions
DOI:
https://doi.org/10.18311/jmmf/2024/45374Keywords:
Efficiency, Electronic Cooling, Heat Dissipation, Immersion Cooling Energy, Liquid Cooling, Phase-Change Cooling, Thermoelectric Cooling, Thermal ManagementAbstract
The ongoing push for miniaturization and increased computational power in electronic devices has intensified thermal management challenges, especially in harsh environments with extreme heat, moisture, vapour, dust, and vibration. This paper provides a comprehensive analysis of both direct and indirect cooling methods, focusing on heat transfer efficiency, optimization techniques, and practical applications. It emphasizes the critical importance of thermal management for maintaining the performance, reliability, and durability of electronic systems under tough conditions. The review explores advanced materials and cooling technologies, including the role of Thermal Interface Materials (TIMs) in prolonging the lifespan of Integrated Circuits (ICs) and the use of Phase Change Materials (PCMs) in substrate boards for versatile thermal management. It also discusses the effectiveness of Liquid Cold Plates for battery module thermal management and the potential of micro-channel liquid cooling systems in Switching Mode Power Supplies (SMPS) boards. By offering detailed insights into thermal design principles, the paper guides engineers in optimizing IC chip placement and improving system reliability. Additionally, it examines the evolution of traditional cooling methods, the rise of innovative techniques like thermoelectric cooling, and the impact of advancements in materials, design, and manufacturing on energy efficiency and environmental sustainability. The review highlights promising research areas and emerging technologies, contributing to the development of more efficient, reliable, and eco-friendly cooling solutions for extreme environments.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2024-08-17
Published 2024-09-27
References
Zhang Z, Wang X, Yan Y. A review of the state-of-theart in electronic cooling. e-Prime - Adv Electr Eng Electron. 2021; 1:100009. https://doi.org/10.1016/j.prime.2021.100009
Scott AW. Cooling of Electronic Equipment, Wiley; 1974.
Birbarah P, Gebrael T, Foulkes T, Stillwell A, Moore A, Pilawa-Podgurski R, et al. Water immersion cooling of highpower density electronics. Int J Heat Mass Transf. 2020; 147:118918 https://doi.org/10.1016/j.ijheatmasstransfer.2019.118918
Speetjens M. Steady-state behavior of a threedimensional pool-boiling system. J Electron Packaging. 2008; 130(4):041102. https://doi.org/10.1115/1.2993147
Kurhade A, Talele V, Rao TV, Chandak A, Mathew VK. Computational study of PCM cooling for electronic circuit of smart-phone. Mater Today Proc. 2021; 47:3171-6. https://doi.org/10.1016/j.matpr.2021.06.284
Kurhade AS, Murali G. Thermal control of IC chips using phase change material: A CFD investigation. Int J Mod Phys C. 2022; 33(12): 2250159. https://doi.org/10.1142/S0129183122501595
Kurhade AS, Rao TV, Mathew VK, Patil NG. Effect of thermal conductivity of substrate board for temperature control of electronic components: A numerical study. Int J Mod Phys C. 2021; 32(10):2150132. https://doi.org/10.1142/S0129183121501321
Kurhade AS, Murali G, Rao TV. CFD approach for thermal management to enhance the reliability of IC chips. Int J Eng Trends Technol. 2023; 71(3):65-72. Crossref, https://doi.org/10.14445/22315381/IJETTV71I3P208
Waware SY, Patil SP, Kore SS, Chinchanikar SS. Characterization and machinability studies of aluminium-based hybrid metal matrix compositesA critical review. J Adv Res Fluid Mech Therm Sci. 2023; 101(2):137-63. https://doi.org/10.37934/ arfmts.101.2.137163
Waware SY, Kore S, Patil P. Heat transfer enhancement in tubular heat exchanger with jet impingement: A review. J Adv Res Fluid Mech Therm Sci. 2023; 101(2):8-25. https://doi.org/10.37934/ arfmts.101.2.825
Waware SY, Kore S, Kurhade AS, Patil P. Innovative heat transfer enhancement in tubular heat exchanger: An experimental investigation with Minijet Impingement. J Adv Res Fluid Mech Therm Sci. 2024; 116(2):51-8. https://doi.org/10.37934/ arfmts.116.2.5158
Khot RS, Kadam PR. Structural behavior of fillet weld joint for bimetallic curved plate using Finite Element Analysis (FEA). 6th International Conference on Advanced Research in Arts, Science, Engineering and Technology, DK International Research Foundation, Perambalur, Tamil Nadu; 2021.
Rahul SK, Rao TV. Investigation of mechanical behaviour of laser welded butt joint of Transformed Induced Plasticity (TRIP) steel with effect laser incident angle. Int J Eng Res Technol. 2020; 13(11):3398. https://doi.org/10.37624/IJERT/13.11.2020.33983403
Rahul SK, Rao TV, Harshad N, Girish HN, Ishigaki T, Madhusudan P. An investigation on laser welding parameters on the strength of TRIP steel. Stroj Vestn -J Mech Eng. 2021; 67(1-2):45-52. https://doi.org/10.5545/sv-jme.2020.6912
Rahul SK, Rao V. Effect of quenching media on laser butt welded joint on Transformed -Induced Plasticity (TRIP) steel. Int J Emerg Trends Eng Res. 2020; 8(10):7686-91. https://doi.org/10.30534/ijeter/2020/1588102020
Khot RS, Rao TV, Keskar A, Girish HN, Madhusudan P. Investigation on the effect of power and velocity of laser beam welding on the butt weld joint on TRIP steel. J Laser Appl. 2020; 32(1):012016. https://doi.org/10.2351/1.5133158
Yadav RS, Bhakare P. FEA based validation of weld joint used in chassis of Light Commercial Vehicles (LCV) in tensile and shear conditions. International Journal of Innovations in Engineering Research and Technology. 2021; 2(3):1-7. https://repo.ijiert.org/ index.php/ijiert/article/view/332
Gadekar TD, Kamble DN, Ambhore NH. Experimental study on gear EP lubricant mixed with Al2O3/SiO2/ ZrO2 composite additives to design a predictive system. Tribology in Industry. 2023; 45(4):579-90. https://doi.org/10.24874/ti.1461.03.23.07
Kamble DN, Gadekar TD, Agrawal DP. Experimental study on gearbox oil blended with composite additives, Jurnal Tribologi. 2022; 33:1-19.
Gadekar T, Kamble D. Tribological investigation on oil blended with Additive using response surface methodology. E3S Web of Conferences. 2020; 170:01025. https://doi.org/10.1051/e3sconf/202017001025
Patil P, Kardekar N, Yadav R, Kurhade A, Kamble D. Al2O3 Nanofluids: An experimental study for MQL grinding. J Mines Met Fuels. 2023; 2751-6. https://doi.org/10.18311/jmmf/2023/41766
Queipo N. Genetic algorithms for thermosciences application to the optimized cooling of electronic components. International Journal of Heat Mass Transf. 1994; 37(6):893-908. https://doi.org/10.1016/0017-9310(94)90215-1
Huanling L, Qi D, Shao X, Wang W. An experimental and numerical investigation of heat transfer enhancement in annular microchannel heat sinks. Int J Therm Sci. 2019; 142:106-20. https://doi.org/10.1016/j.ijthermalsci.2019.04.006
Liu Y. An optimum spacing problem for three chips mounted on a vertical substrate in an enclosure. Numer Heat Transf A. 2000; 37(6):613-30. https://doi.org/10.1080/104077800274118
Ozsunar A, Arcaklıoglu E, Dur FN. The prediction of maximum temperature for single chips’ cooling using artificial neural networks. Heat Mass Transf. 2008; 45(4):443-50. https://doi.org/10.1007/s00231-0080445-x
Sudhakar TVV, Shori A, Balaji C, Venkateshan SP. Optimal heat distribution among discrete protruding heat sources in a vertical duct: A combined numerical and experimental study. J Heat Transfer. 2009; 132(1). https://doi.org/10.1115/1.3194762
Kadiyala PK, Chattopadhyay H. Optimal location of three heat sources on the wall of a square cavity using genetic algorithms integrated with artificial neural networks Int Comm Heat Mass Transf. 2011; 38(5):620-4. https://doi.org/10.1016/j.icheatmasstransfer.2011.03.018
Athavale J, Joshi Y, Yoda M. Artificial neural network based prediction of temperature and flow profile in data centers. 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm); 2018. p. 871–80. https:// doi.org/10.1109/ITHERM.2018.8419607
Mathew VK, Patil NG. Emerging Trends in Mechanical Engineering. Lect Notes Mech Eng. 2018.
Patra RR, Das S, Jana RN, Ghosh SN. Transient approach to radiative heat transfer free convection flow with ramped wall temperature. J Appl Fluid Mech. 2012; 5(2):9-13. https://doi.org/10.36884/jafm.5.02.12162
Vasu B, Prasad VR, Reddy NB. Radiation and mass transfer effects on transient free convection flow of a dissipative fluid past semi-infinite vertical plate with uniform heat and mass flux. J Appl Fluid Mech. 2011; 4(1):15-26. https://doi.org/10.36884/jafm.4.01.11897
Kannan, KG, Kamatchi R, Venkatajalapathi T, Krishnan AS. Enhanced heat transfer by thermosyphon method in electronic devices. Int J Heat Tech. 2018; 36(1):33943. https://doi.org/10.18280/ijht.360145
Delia DJ, Gilgert TC, Graham NH, Hwang U, Ing PW, Kan JC, et al.. System cooling design for the watercooled IBM Enterprise System/9000 processors. IBM J Res Dev. 1992; 36(4):791-803. https://doi.org/10.1147/rd.364.0791
Knight RW, Hall D, Goodling JS, Jaeger RC. Heat sink optimization with application to microchannels. IEEE Trans Compon Packag Manuf Technol. 1992; 15(5):832-42. https://doi.org/10.1109/33.180049
Lee S. Optimum design and selection of heat sinks. IEEE Trans Compon Packag Manuf Technol: Part A. 1995; 18(4):812-7. https://doi.org/10.1109/95.477468
Lee T-Y. Design optimization of an integrated liquidcooled IGBT power module using CFD technique. IEEE Trans Compon Packag Manuf Technol. 2000; 23(1):55-60. https://doi.org/10.1109/6144.833042
Hetsroni G, Mosyak A, Segal Z, Ziskind G. A uniform temperature heat sink for cooling of electronic devices. Int J Heat Mass Transf. 2002; 45(16):3275-86. https://doi.org/10.1016/S0017-9310(02)00048-0
Kang S, Miller D, Cennamo J. Closed loop liquid cooling for high performance computer systems. ASME 2007 InterPACK Conference, Vol 2; 2007. https://doi.org/10.1115/IPACK2007-33870
Nguyen CT, Roy G, Gauthier C, Galanis N. Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system. Appl Therm Eng. 2007; 27(8):1501-6. https://doi.org/10.1016/j. applthermaleng.2006.09.028
Wei X, Joshi Y, Patterson MK. Experimental and numerical study of a stacked microchannel heat sink for liquid cooling of microelectronic devices. J Heat Transf. 2007; 129(10):1432-44. https://doi.org/10.1115/1.2754781
Williams ZA, Roux JA. Thermal management of a high packing density array of power amplifiers using liquid cooling. J Electron Packag. 2007; 129(4):48895. https://doi.org/10.1115/1.2804100
Acikalin T, Schroeder, C. Direct liquid cooling of bare die packages using a microchannel cold plate. 14th IEEE ITHERM Conference; 2014. p. 673-80. https:// doi.org/10.1109/ITHERM.2014.6892346
Sohel MR, Khaleduzzaman SS, Saidur R, Hepbasli A, Sabri MFM, Mahbubul IM. An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3–H2O nanofluid. Int J Heat Mass Transf. 2014; 74:164-72. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.010
Ge Y, Shan F, Liu Z, Liu W. Optimal structural design of a heat sink with laminar single-phase flow using computational fluid dynamics-based multi-objective genetic algorithm. J Heat Transfer. 2017; 140(2) https://doi.org/10.1115/1.4037643
Kumar CMA, Kumar PCM. Review on electronics cooling systems. Adv Nat Adv Sci. 2017; 11(8):271-9.
Wang C, Zhang G, Meng L, Li X, Situ W, Lv Y, et al. Liquid cooling based on thermal silica plate for battery thermal management system. Int J Energy Res. 2017; 41(15):2468-79. https://doi.org/10.1002/er.3801
Andersson T, Nowak D, Johnson T, Mark A, Edelvik F, Küfer KH. Multiobjective optimization of a heatsink design using the sandwiching algorithm and an immersed boundary conjugate heat transfer solver. J Heat Transfer. 2018; 140(10). https://doi.org/10.1115/1.4040086
Tan H, Chen J, Wang M, Du P. Experimental study of flow boiling heat transfer in spider netted microchannel for chip cooling. Proceedings of the World Congress on Engineering Vol II; 2018. p. 4-7.
Chen CH, Ding CY. Study on the thermal behavior and cooling performance of a nanofluidcooled microchannel heat sink. Int J Therm Sci. 2011; 50(3):378-84. https://doi.org/10.1016/j.ijthermalsci.2010.04.020
Back D, Drummond KP, Sinanis MD, Weibel JA, Garimella SV, Peroulis D, et al. Design, fabrication, and characterization of a compact hierarchical manifold microchannel heat sink array for two-phase cooling. 2019; 9(7):1291-300. https://doi.org/10.1109/ TCPMT.2019.2899648
van Erp R, Kampitsis G, Matioli E. A manifold microchannel heat sink for ultra-high power density liquid-cooled converters. 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019 Mar 17-21, Anaheim, CA, USA; 2019. https://doi.org/10.1109/APEC.2019.8722308
Huanling L, Qi D, Shao X, Wang W. An experimental and numerical investigation of heat transfer enhancement in annular microchannel heat sinks. Int J Therm Sci. 2019; 142:106-20. https://doi.org/10.1016/j.ijthermalsci.2019.04.006
Honnor F, Thomas MA. Packaging and cooling problems associated with microelectronics equipment. Microelectron Reliab. 1969; 8(4):331-7. https://doi.org/10.1016/0026-2714(69)90394-1
Baker E. Liquid cooling of microelectronic devices by free and forced convection. Microelectron Reliab. 1972; 11(2):213-22. https://doi.org/10.1016/00262714(72)90704-4
Tuckerman DB. Heat-transfer microstructures for integrated circuits, Ph.D. Thesis; 1984.
Kiper AM. Impinging water jet cooling of VLSI circuits. Int Commun Heat Mass Transf. 1984; 11(6):517-26. https://doi.org/10.1016/0735-1933(84)90003-4
Incropera FP, Kerby JS, Moffatt DF, Ramadhyani S. Convection heat transfer from discrete heat sources in a rectangular channel. Int J Heat Mass Transf. 1986; 29(7):1051-8. https://doi.org/10.1016/00179310(86)90204-8
Samant KR, Simon TW. Heat transfer from a small heated region to R-113 and FC-72. J Heat Transf. 1989; 111(4):1053-9. https://doi.org/10.1115/1.3250767
Agbim KA. Sinlge-phase liquid cooling for thermal. Ph.D. Thesis; 2017.
Carmona R, Keyhani M. The cavity width effect on immersion cooling of discrete flush-heaters on one vertical wall of an enclosure cooled from the top. J Electron Packag. 1989; 111(4):268-76. https://doi.org/10.1115/1.3226546
Joshi Y, Willson T, Hazard SJ. An experimental study of natural convection from an array of heated protrusions on a vertical surface in water. J Electron Packag. 1989; 111(2):121-8. https://doi.org/10.1115/1.3226516
Jaeger RC, Ellis CD, Goodling JS, Williamson NV, Baginski ME, O’Barr RM. High heat flux cooling for silicon-on-silicon packaging. Fifth Annual IEEE Semiconductor Thermal and Temperature Measurement Symposium, 1989 Feb 7-9, San Diego, CA, USA; 1989. https://doi.org/10.1109/ STHERM.1989.76074
Mudawar I, Maddox DE. Enhancement of critical heat flux from high power microelectronic heat sources in a flow channel. J Electron Packag. 1990; 112(3):241-8. https://doi.org/10.1115/1.2904373
Wadsworth DC, Mudawar I. Cooling of a multichip electronic module by means of confined twodimensional jets of dielectric liquid. J Heat Transfer.; 112(4):891-8. https://doi.org/10.1115/1.2910496
Mahaney HV, Incropera FP, Ramadhyani S. Measurement of mixed-convection heat transfer from an array of discrete sources in a horizontal rectangular channel with and without surface augmentation. Exp Heat Trans. 1990; 3(3):215-37. https://doi.org/10.1080/08916159008946387
Besserman DL, Incropera FP, Ramadhyani S. Experimental study of heat transfer from a discrete source to a circular liquid jet with annular collection of the spent fluid. Exp Heat Trans. 1991; 4(1):41-57. https://doi.org/10.1080/08916159108946404
Schafer D, Incropera FP, Ramadhyani S. Planar liquid jet impingement cooling of multiple discrete heat sources. J Electron Packag. 1991; 113(4):359-66. https://doi.org/10.1115/1.2905421
Ali MM, Ramadhyani S. Experiments on convective heat transfer in corrugated channels. Exp Heat Trans. 1992; 5(3):175-93. https://doi.org/10.1080/08916159208946440
Gersey CO, Mudawar I. Effects of orientation on critical heat flux from chip arrays during flow boiling. J Electron Packag. 1992; 114(3):290-9. https://doi.org/10.1115/1.2905453
Heindel TJ, Incropera FP, Ramadhyani S. Liquid immersion cooling of a longitudinal array of discrete heat sources in protruding substrates: I-single-phase convection. J Electron Packag. 1992; 114(1):55-62. https://doi.org/10.1115/1.2905442
Maddox DE, Bar-Cohen A. Thermofluid design of single-phase submerged-jet impingement cooling for electronic components. J Electron Packag. 1994; 116(3):237-40. https://doi.org/10.1115/1.2905692
Lam PAK, Prakash KA. Thermodynamic investigation and multi-objective optimization for jet impingement cooling system with Al2O3/water nanofluid. Energy Convers Manag. 2016; 111:38-56. https://doi.org/10.1016/j.enconman.2015.12.018
Heindel TJ, Incropera FP, Ramadhyani S. Enhancement of natural convection heat transfer from an array of discrete heat sources. Int J Heat Mass Transf. 1996; 39(3):479-90. https://doi.org/10.1016/0017-9310(95)00153-Z
Estes KA, Mudawar I. Comparison of two-phase electronic cooling using free jets and sprays. J Electron Packag. 1995; 117(4):323-32. https://doi.org/10.1115/1.2792112
Gupta A, Jaluria Y. Forced convective liquid cooling of arrays of protruding heated elements mounted in a rectangular duct. J Electron Packag. 1998; 120(3):24352. https://doi.org/10.1115/1.2792629
Tou SKW, Tso CP, Zhang X. 3-D numerical analysis of natural convective liquid cooling of a 3×3 heater array in rectangular enclosures. Int J Heat Mass Transf. 1999; 42(17):3231-44. https://doi.org/10.1016/S00179310(98)00379-2
Leena R, Syamkumar G, Prakash MJ. Experimental and Numerical analyses of multiple jets impingement cooling for high-power electronics. IEEE Trans Compon Packag Manuf Technol. 2018; 8(2):210-5. https://doi.org/10.1109/TCPMT.2017.2783629
Oh CH, Lienhard JH, Younis HF, Dahbura RS, Michels D. Liquid jet‐array cooling modules for high heat fluxes. AIChE J. 1998; 44(4):769-79. https://doi.org/10.1002/aic.690440402
Wang D, Yu E, Przekwas A. A computational study of two phase jet impingement cooling of an electronic chip. 15th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.99CH36306); 1999. p. 10-15
Cheng Y, Andrew AAO. 2001. An experimental study of liquid jet impingement cooling of electronic components with and without boiling. Adv Electron Mater Pack. 2001: 369-75.
Saini M, Webb RL. Heat rejection limits of air cooled plane fin heat sinks for computer cooling. IEEE Trans Compon Packag Manuf Technol. 2003; 26(1):71-9. https://doi.org/10.1109/TCAPT.2003.811465
McGlen RJ, Jachuck R, Lin S. Integrated thermal management techniques for high power electronic devices. Appl Therm Eng. 2004; 24(8-9):1143-56. https://doi.org/10.1016/j.applthermaleng.2003.12.029
Overholt MR, McCandless A, Kelly KW, Becnel C, Motakef S. Micro-jet arrays for cooling of electronic equipment. Proceedings of ASME 3rd International Conference of Microchannels and Minichannels, 2005 Jun 13-15, Toronto, Ortanto, Canada; 2005. p. 1-4. https://doi.org/10.1115/ICMM2005-75250
Bhowmik H, Tou KW. Study of transient forced convection heat transfer from discrete heat sources in a FC-72 cooled vertical channel. Int J Therm Sci. 2005; 44(5):499-505. https://doi.org/10.1016/j.ijthermalsci.2004.09.002
Fabbri M, Dhir VK. Optimized heat transfer for high power electronic cooling using arrays of microjets. J Heat Transfer. 2004; 127(7):760-9. https://doi.org/10.1115/1.1924624
Robinson AJ, Schnitzler E. An experimental investigation of free and submerged miniature liquid jet array impingement heat transfer. Exp Therm Fluid Sci. 2007; 32(1):1-13. https://doi.org/10.1016/j.expthermflusci.2006.12.006
Pérez-Flores F, Treviño C, Martínez-Suástegui L. Transient mixed convection heat transfer for opposing flow from two discrete flush-mounted heaters in a rectangular channel of finite length: Effect of buoyancy and inclination angle. Int J Therm Sci. 2016; 104:35772. https://doi.org/10.1016/j.ijthermalsci.2015.12.021
Maddox J, Knight RW, Bhavnani SH, Pool JM. Correlation for single phase liquid jet impingement with an angled confining wall for power electronics cooling. 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2016 May 31 – Jun 3, Las Vegas, NV, USA; 2016. https://doi.org/10.1109/ITHERM.2016.7517642
Sung MK, Mudawar I. Correlation of critical heat flux in hybrid jet impingement/micro-channel cooling scheme. Int J Heat Mass Transf. 2006; 49(15-16):2663-72. https://doi.org/10.1016/j.ijheatmasstransfer.2006.01.008
Colgan EG, Furman B, Gaynes M, Graham W, LaBianca N, Magerlein J, et al. A practical implementation of silicon microchannel coolers for high power chips. 21st IEEE SEMI-THERM Symposium.
Amon CH, Yao SC, Wu CF, Hsieh CC. Microelectromechanical system-based evaporative thermal management of high heat flux electronics. J Heat Transfer. 2005; 127(1):66-75. https://doi.org/10.1115/1.1839586
Ijam A, Saidur R. Nanofluid as a coolant for electronic devices (cooling of electronic devices). Appl Therm Eng. 2012; 32:76-82. https://doi.org/10.1016/j.applthermaleng.2011.08.032
Calame JP, Park D, Bass R, Myers RE, Safier PN. Investigation of hierarchically branched-microchannel coolers fabricated by deep reactive ion etching for electronics cooling applications. J Heat Transfer. 2009; 131(5). https://doi.org/10.1115/1.3001017
Naphon P, Wongwises S. Experimental study of jet nanofluids impingement system for cooling computer processing unit. J Elect Cooling Therm Control. 2011; 01(03):38-44. https://doi.org/10.4236/jectc.2011.13005
Roberts NA, Walker DG. Convective performance of nanofluids in commercial electronics cooling systems. Appl Therm Eng. 2010; 30(16):2499-504. https://doi.org/10.1016/j.applthermaleng.2010.06.023
Kurhade AS, Biradar R, Yadav RS, Patil P, Kardekar NB, Waware SY, et al. Predictive placement of IC chips using ANN-GA approach for efficient thermal cooling. J Adv Res Fluid Mech Therm Sc. 2024; 118(2):137-4.
Upadhe SN, Mhamane SC, Kurhade AS, Bapat PV, Dhavale DB, Kore LJ. Water saving and hygienic faucet for public places in developing countries. Springer eBook; 2019. p. 617-24. https://doi.org/10.1007/978-3-030-16848-3_56
Kurhade AS, Siraskar GD, Bhambare PS, Dixit SM, Waware SY. Numerical investigation on the influence of substrate board thermal conductivity on electronic component temperature regulation. J Adv Res Numer Heat Trans. 2024; 23(1):28-37. https://doi.org/10.37934/arnht.23.1.2837
Kurhade AS, Kadam AA, Biradar R, Bhambare PS, Gadekar T, Patil P, Yadav RS, Waware SY. Experimental investigation of heat transfer from symmetric and asymmetric IC chips mounted on the SMPS board with and without PCM. J Adv Res Fluid Mech Therm Sc. 2024; 121(1):137-4.
Kurhade AS, Kardekar NB, Bhambare PS, Waware SY, Yadav RS, Pawar P, Kirpekar S. A comprehensive review of electronic cooling technologies in harsh field environments: obstacles, progress, and prospects. J Mines Met Fuels. 2024; 72(6):557-79. https://doi.org/10.18311/jmmf/2024/45212
Kurhade AS, Waware SY, Munde KH, Biradar R, Yadav RS, Patil P, Patil VN, Dalvi SA. Performance of Solar Collector Using Recycled Aluminum Cans for Drying. J Mines Met Fuels. 2024; 72(5):455-61. https://doi.org/10.18311/jmmf/2024/44643
Kurhade AS, Waware SY, Bhambare PS, Biradar R, Yadav RS, Patil VN. A comprehensive study on Calophyllum inophyllum biodiesel and dimethyl carbonate blends: Performance optimization and emission control in diesel engines. J Mines Met Fuels. 2024; 72(5):499-507. https://doi.org/10.18311/jmmf/2024/45188
Kurhade AS, Siraskar GD, Kondhalkar GE, Darade MM, Yadav RS, Biradar R, Waware SY, Charwad GA. Optimizing aerofoil design: A comprehensive analysis of aerodynamic efficiency through CFD simulations and wind tunnel experiments. J Mines Met Fuels. 2024; 72(7):713-24.
Kurhade AS, Siraskar GD, Darade MM, Dhumal JR, Kardile CS, Biradar R, Patil SP, Waware SY. predicting heat transfer enhancement with twisted tape inserts using fuzzy logic techniques in heat exchangers J Mines Met Fuels. 2024; 72(7):743-50.