An Extensive Study of Nano Fluids and their Applications in Real Life
DOI:
https://doi.org/10.18311/jmmf/2024/45407Keywords:
Applications, Characteristics, Development, Nano FluidAbstract
As a material with numerous applications, such as heat transmission and detergency, nanofluids are significant. Colloids are nanofluids that have long been used in the biomedical industry; going forward, this use will only grow. Nanofluids have also been demonstrated to be effective as smart fluids. The problems of settling, erosion potential, and aggregation of nanoparticles in the applications need to be carefully studied. For experimental study, nanofluids must have detailed descriptions of their shape, size distribution, particle size, and clustering in order to optimize the results generalizability.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2024-09-05
Published 2024-10-30
References
Nasser MS, James AE. Settling and sediment bed behaviour of kaolinite in aqueous media. Sep PurifTechnol. 2006; 51(1):10–17. https://doi.org/10.1016/j.seppur.2005.12.017
Gharagozloo PE, Goodson KE. Aggregate fractal dimensions and thermal conduction in nanofluids. J Appl Phys. 2010; 108:074309. https://doi.org/10.1063/1.3481423
Mehrali M, Sadeghinezhad E, Rosen MA, et al. Heat transfer and entropy generation for laminar forced convection flow of graphene nanoplatelets nanofluids in a horizontal tube. Int Commun Heat Mass Transf. 2015; 66:23–31. https://doi.org/10.1016/j.icheatmasstransfer.2015.05.007
Singh AK, Raykar VS. Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties. Colloid Polym Sci. 2008; 286:1667–1673. https://doi.org/10.1007/s00396-0081932-9
Fedele L, Colla L, Bobbo S, et al. Experimental stability analysis of different water-based nanofluids. Nanoscale Res Lett. 2011; 6(300). https://doi.org/10.1186/1556-276x-6-300
Bobkov V, Fokin L, Petrov E, et al. Thermophysical properties of materials for nuclear engineering: A tutorial and collection of data. Int At Energy Agency.2018.
Chung DDL. Materials for thermal conduction. Appl Therm Eng. 2001; 21(16):1593–1605. https://doi.org/10.1016/s1359-4311(01)00042-4
Hofmeister AM. Thermal diffusivity and thermal conductivity of single-crystal MgO and Al2O3 and related compounds as a function of temperature. Phys Chem Miner. 2014; 41:361–371. https://doi.org/10.1007/s00269-014-0655-3
Shackelford JF, Alexander W. CRC materials science and engineering handbook. CRC Press; 2000.
Kim SH, Choi SR, Kim D. Thermal conductivity of metaloxide nano fluids: Particle size dependence and effect of laser irradiation. J Heat Transfer. 2007; 129(3):298–307. https://doi.org/10.1115/1.2427071
Peyghambarzadeh SM, Hashemabadi SH, Jamnani MS, Hoseini SM. Improving the cooling performance of automobile radiator with Al2O3/water nano fluid. J Appl Therm Eng. 2011; 31(10):1833–1838. https:// doi.org/10.1016/j.applthermaleng.2011.02.029
Nguyen CT, Roy G, Gauthier C, Galanis N. Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system. Appl Therm Eng. 2007; 27(8-9):1501-1506. https://doi.org/10.1016/j.applthermaleng.2006.09.028
Hwang KS, Jang SP, Choi SUS. Flow and convective heat transfer characteristics of water-based Al2O3 nano fluids in fully developed laminar flow regime. Int J Heat Mass Transf. 2009; 52(1-2):193–199. https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.032
Chavda NK, Patel GV, Bhadauria MR, Makwana MN. Effect of nano fluid on friction factor of pipe and pipe fittings: Part ii effect of copper oxide nanofluid. Int J Res Eng Technol. 2015; 4(4):697–700. https://doi.org/10.15623/ijret.2015.0404120
Xuan Y, Roetzel W. Conceptions for heat transfer correlation of Nano fluids. Int J Heat Mass Transf.2000; 43(9):3701–3707. https://doi.org/10.1016/ s0017-9310(99)00369-5
Kakac S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009; 52:3187–3196.
Gupta SS, Siva VM, Krishnan S, et al. Thermal conductivity enhancement of nano fluids containing graphene nanosheets. J Appl Phys. 2011; 110:084302. https://doi.org/10.1063/1.3650456
Sheikholeslami M, Jafaryar M, Shafee A, Babazadeh H. Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J Clean Prod. 2020; 261:121206. https://doi. org/10.1016/j.jclepro.2020.121206
Wen D, Lin G, Vafaei S, Zhang K. Review of nano fluids for heat transfer applications. Particuology. 2009; 7:141–150.
Cheng L, Bandarra Filho EP, Thome JR. Nano fluid two phase flow and thermal physics: A new research frontier of nanotechnology and its challenges. J Nanosci Nanotechnol. 2008; 8(7):3315–3332. https://doi.org/10.1166/jnn.2008.413
Shanbedi M, Heris SZ, Amiri A, et al. Synthesis of aspartic acid-treated multi-walled carbon nanotubes based water coolant and experimental investigation of thermal and hydrodynamic properties in circular tube. Energy Convers Manag. 2015; 105:1366-1376. https://doi.org/10.1016/j.encon man.2015.09.002
Heris SZ, Mohammadpur F, Mahian O, Sahin AZ. Experimental study of two phase closed thermosyphon using cuo or water nanofluid in the presence of electric feld. Exp Heat Transf. 2015; 28(4):328–343. https://doi.org/10.1080/08916152.2014.883448
Huminic G, Huminic A. Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids. Energy Convers Manag. 2013; 76:393–399. https://doi.org/10.1016/j.enconman.2013.07.026
Zhu HT, Lin YS, Yin YS. A novel one-step chemical method for preparation of copper nano fluids. J Colloid Interface Sci. 2004; 277(1):100-103. https://doi.org/10.1016/j.jcis.2004.04.026
Zhu D, Li X, Wang N, et al. Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nano fluids. Curr Appl Phys. 2009; 9(1):131-139. https://doi.org/10.1016/j.cap.2007.12.008
Sahooli M, Sabbaghi S. CuO nano fluids: The synthesis and investigation of stability and thermal conductivity. J Nano fluids. 2012; 1(2):155–160. https://doi.org/10.1166/jon.2012.1014
Li X, Zhu D, Wang X. Evaluation on dispersion behaviour of the aqueous copper nano-suspensions. J Colloid Interface Sci. 2007; 310(2):456–463. https://doi.org/10.1016/j.jcis.2007.02.067
Maniyar KG, Ingole DS. Multi response optimization of EDM process parameters for aluminium hybrid composites by GRA. Mater Today Proc. 2018; 5:1983643. https://doi.org/10.1016/j.matpr.2018.06.347
Maniyar KG, Ingole DS. Investigation of EDM process parameters for hybrid metal matrix composites. IOP Conf Ser Mater Sci Eng. 2018; 377:012204. https://doi.org/10.1088/1757-899X/377/1/012204
Maniyar KG, Ingole DS. Mathematical modeling and optimization of EDM process parameters for aluminium hybrid composites. Mater Today Proc. 2018; 5(14):27700-9. https://doi.org/10.1016/j.matpr.2018.10.004
Maniyar KG, Ingole DS. Influence of EDM control factors for aluminium hybrid Composites. Lect Notes Multidiscipl Indust Eng. 2018; 275-84. https://doi.org/10.1007/978-3-319-76276-0_27
Maniyar KG. An experimental analysis of aluminium hybrid metal matrix composites. Mater Today Proc. 2024. https://doi.org/10.1016/j.matpr.2024.01.021
Maniyar KG, Marode RV, Chikalthankar SB. Optimization of EDM process parameters on MRR and TWR of Tungsten Carbide by Taguchi Method. Int J Eng Adv Technol. 2016; 5(3):112-116.
Maniyar KG. Analysis of EDM process parameters on material removal rate of WC. 2nd Nat Conf Recent Inno Sci Eng. 2017; 5(9):37-9.
Maniyar KG, Agrawal SK, Ingole DS. Optimization of multiple performance characteristics in EDM: A critical literature review. Int J Innov Technol Explor Eng. 2016; 5(10):27-33.
Maniyar KG, Deore HV. Design and testing of carbon fiber composite material with comparative analysis. Int Res J Eng Tech. 2020; 7(8):1120-1122.
Maniyar KG, Ingole DS. Current research development in machining of hybrid metal matrix composites: A review. Int J Recent Innov Trends Comput Commun. 2016; 4(7):150-154.
Jadhav PA, Maniyar K. Evaluation and characterization of aluminum silicon carbide metal matrix composites. AIP Conf Proc. 2024; 3196(1): 040002. https://doi.org/10.1063/5.0227945
Maniyar K, Jadhav P, Biradar R, Gawande J. An experimental study of process parameters for nano composites. NanoWorld J. 2024; 10(S1):S209-S211. https://doi.org/10.17756/nwj.2024-s1-037
Maniyar K, Jadhav P, Biradar R, Gawande J. Effect of nano-lubricants on journal bearing for performance enhancement. NanoWorld J. 2024; 10(S1):S206-S208.
Maniyar K, Suhane S. Parametric analysis of electric discharge machining for nano composites. NanoWorld J. 2024; 10(S1):S63-S65.
Maniyar K, Puri A, Pawar P, Patil V, Jadhav P, Patil G, et al. The comprehensive study for machining of metal matrix composites. AIP Conf Proc. 2024; 3196(1):040005. https://doi.org/10.1063/5.0227955
Maniyar K, Warke P, Jadhav P, Waware S, Harsur S, Biradar R. An extensive study of mechanical properties and tribological characteristics for hybrid composites. AIP Conf Proc. 2024; 3149(1):030038. https://doi.org/10.1063/5.0224994
Maniyar K, Pawar P, Kolhe P, Ingale M, Patil P, Sarode G. The comprehensive study of synthesis and characterization of hybrid nano fluids. AIP Conf Proc. 2024; 3149(1): 030048. https://doi.org/10.1063/5.0224988
Ghutepatil PR, Khapare S, Joshi RB, Maniyar KG. A critical review of nanotechnology in various fields of engineering. AIP Conf Proc. 2024; 3149(1): 030002. https://doi.org/10.1063/5.0224984
Thamke V, Saravade N, Banarase S, Maniyar K. Seismic performance and cost analysis of AAC blocks vs. fly ash bricks: A comparative study utilizing STAAD pro. AIP Conf Proc. 2024; 3196(1):060006. https://doi.org/10.1063/5.0227895
Banarase S, Banarase M, Saravade N, Thamke V, Maniyar K. Evaluation of concrete building strengthening through non-destructive testing methods - A case study. AIP Conf Proc. 2024; 3196(1):040001. https://doi.org/10.1063/5.0227927
Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transfer. 1999; 121(2):280–289. https://doi.org/10.1115/1.2825978
Eastman JA, Choi SUS, Li S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nano fluids containing copper nanoparticles. Appl Phys Lett. 2001; 78(6):718–720. https://doi.org/10.1063/1.1341218
Choi SUS, Zhang ZG, Yu W, et al. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001;79(14):2252–225. https://doi.org/10.1063/1.1408272
Das SK, Choi SU, Yu W, Pradeep T. Nano fluids: Science and technology. Wiley; 2007.
Choi S. Nano fluids for improved efficiency in cooling systems. Heavy Veh Syst Rev. 2006; 18–20.
Sarkar J. A critical review on convective heat transfer correlations of nano fluids. Renew Sustain Energy Rev. 2011; 15(6):3271–3277. https://doi.org/10.1016/j.rser.2011.04.025
Hwang Y, Park HS, Lee JK, Jung WH. Thermal conductivity and lubrication characteristics of nano fluids. Curr Appl Phys. 2006; 6(1):e67–e71. https://doi.org/10.1016/j.cap.2006.01.014
Lee SW, Park SD, Kang S, et al. Investigation of viscosity and thermal conductivity of SiC nano fluids for heat transfer applications. Int J Heat Mass Transf. 2011; 54(1-3):433–438. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.026