In Vitro Studies on Antioxidant Potential of Apple (Malus domestica) Fructus Extract Nanoparticle
DOI:
https://doi.org/10.18311/jnr/2023/32238Keywords:
Antioxidant, DPPH, FRAP, H2O2, Malus domestica, NanotechnologyAbstract
Oxidative stress results from an imbalance of free radicals and antioxidants in the body. Antioxidants are needed to prevent oxidative stress. A diet rich in fruits and vegetables, which are high in antioxidants, should help avoid oxidative stress. One source of antioxidants is apples (Malus domestica) from the Rosaceae family because they have some bioactive compounds such as catechin, chlorogenic acid, quercetin, and phloridzin. Recently, many studies have used nanotechnology to formulate plant extracts. Due to their size and distinctive physicochemical properties, nanoparticles in plant extracts have various benefits. Analyzing apple extract nanoparticles’ antioxidant capacity was the goal of this work. The synthesized nanoparticles of apples were made by using chitosan, glacial acetic acid, propylene glycol, ethanol, DMSO, and Na-TPP. A dynamic light scattering particle size analyser was used to measure the zeta potential and particle size. Antioxidant activity was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, Hydrogen Peroxide (H2O2) scavenging activities, and Ferric Reducing Antioxidant Power (FRAP) assay using colorimetric methods. At a concentration of 100 g/ml, the most DPPH was scavenged (80.35%). Apple extract nanoparticles have strong DPPH scavenging activity with IC50 = 12.16 ± 2.98 µg/ml and H2O2 scavenging activity with IC50 = 81.96 ± 7.23 µg/ml. The highest H2O2 scavenging activity was at 200 µg/ml concentration (84.47%) and the highest FRAP activity was at a concentration of 50 µg/ml (444.29%). The concentration is directly proportional to the antioxidant activity of apple extract nanoparticles. Based on this study, apple extract nanoparticle has strong antioxidant activity.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Sri Utami, Ndaru Andri Damayanti, Nunung Ainur Rahmah, Said Nafik, Betharie Cendera Arrahmani, Anis Syabani Muthmainnah, Hanna Sari Widya Kusuma, Wahyu Widowati (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-09-14
Published 2023-11-10
References
Poljsak B, Šuput D, Milisav I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid Med Cell Longev. 2013; 2013:956792. https://doi.org/10.1155/2013/956792 PMid:23738047 PMCid:PMC3657405 DOI: https://doi.org/10.1155/2013/956792
Amudhan MS, Begum VH, Hebbar KB. A review on phytochemical and pharmacological potential of Areca catechu L. seed. International Journal of Pharmaceutical Sciences and Research. 2012; 3:4151-7. https://doi.org/10.13040/IJPSR.0975-8232.3(11).4151-57 DOI: https://doi.org/10.13040/IJPSR.0975-8232.3(11).4151-57
Aune D, Giovannucci E, Boffetta P, Fadnes LT, Keum N, Norat T, Greenwood DC, Riboli E, Vatten LJ, Tonstad S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality - A systematic review and dose-response meta-analysis of prospective studies. International Journal of Epidemiology. 2017; 46(3):1029-56. https://doi.org/10.1093/ije/dyw319 PMid:28338764 PMCid:PMC5837313 DOI: https://doi.org/10.1093/ije/dyw319
Prasad K, Shekhar S. Antioxidant potential of Fruits and Vegetables. Journal of Clinical Nutrition and Dietetics. 2022.
Prasad KN, Chew LY, Khoo HE, Kong KW, Azlan A, Ismail A. Antioxidant capacities of peel, pulp, and seed fractions of Canarium odontophyllum Miq. fruit. J Biomed Biotechnol. 2010; 2010:871379. https://doi.org/10.1155/2010/871379 PMid:20936182 PMCid:PMC2946633 DOI: https://doi.org/10.1155/2010/871379
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules. 2020; 25(22):5243. https://doi.org/10.3390/molecules25225243 PMid:33187049 PMCid:PMC7697716 DOI: https://doi.org/10.3390/molecules25225243
Hajialyani M, Tewari D, Sobarzo-Sanchez E, Nabavi SM, Farzaei MH, Abdollahi M. Natural product-based nanomedicines for wound healing purposes: Therapeutic targets and drug delivery systems. International journal of nanomedicine. 2018; 13:5023. https://doi.org/10.2147/IJN.S174072 PMid:30214204 PMCid:PMC6128268 DOI: https://doi.org/10.2147/IJN.S174072
Husni P, Ramadhania ZM. Plant Extract Loaded Nanoparticles. Indonesian Journal of Pharmaceutics. 2021; 3(1):38-49. https://doi.org/10.24198/idjp.v3i1.34032 DOI: https://doi.org/10.24198/idjp.v3i1.34032
Syarmalina, Wirawan D, Rahmat D. Formulasi Nanopartikel Ekstrak Temu Lawak Berbasis Kitosan Sebagai Antijerawat. Medical Sains: Jurnal Ilmiah Kefarmasian. 2019; 3(2):153-8. https://doi.org/10.37874/ms.v3i2.79 DOI: https://doi.org/10.37874/ms.v3i2.79
Atun S, Arianingrum R, Cahyaningsih L, Pratiwi FA, Kusumaningrum R, Khairuddean M. Formulation and characterization of quercitrin nanoemulsion isolated from dendropthoe falcata and its antioxidant activity test. system. 2020; 13(3):1347-56. https://doi.org/10.31788/RJC.2020.1335868 DOI: https://doi.org/10.31788/RJC.2020.1335868
Widowati W, Wargasetia TL, Marthania M, Hanifa TS, Zakaria TM, Gunadi MS, Halim N, Santiadi S. Antioxidant Properties of TeNan Herbal Tea Formulation “Telang (Clitoria ternatea) and Pineapple (Ananas comosus)”. Jurnal Kedokteran Brawijaya. 2022; pp. 87-93. https://doi.org/10.21776/ub.jkb.2022.032.02.3 DOI: https://doi.org/10.21776/ub.jkb.2022.032.02.3
Prahastuti S, Hidayat M, Hasiana ST, Widowati W, Widodo WS, Handayani RA, Rizal R, Kusuma HS. The ethanol extract of the bastard cedar (Guazuma ulmifolia L.) as antioxidants. Pharmaciana. 2020; 10(1):77-88. https://doi.org/10.1088/1742-6596/1374/1/012020 DOI: https://doi.org/10.12928/pharmaciana.v10i1.13636
Mukhopadhyay D, Dasgupta P, Roy DS, Palchoudhuri S, Chatterjee I, Ali S, Dastidar SG. A sensitive in vitro spectrophotometric hydrogen peroxide scavenging assay using 1, 10-phenanthroline. Free Radicals and Antioxidants. 2016; 6(1):124-32. https://doi.org/10.5530/fra.2016.1.15 DOI: https://doi.org/10.5530/fra.2016.1.15
Widowati W, Janeva WB, Nadya S, Amalia A, Arumwardana S, Kusuma HS, Arinta Y. Antioxidant and antiaging activities of Jasminum sambac extract, and its compounds. Journal of Reports in Pharmaceutical Sciences. 2018; 7(3):270-85. https://doi.org/10.20307/nps.2017.23.3.192 DOI: https://doi.org/10.4103/2322-1232.254804
Issa NK, Abdul Jabar R, Hammo Y, Kamal I. Antioxidant activity of apple peels bioactive molecules extractives. Science and Technology. 2016; 6(3):76-88. https://doi.org/10.5923/j.scit.20160603.03
Jiménez-Estrada M, Velázquez-Contreras C, Garibay-Escobar A, Sierras-Canchola D, Lapizco-Vázquez R, Ortiz-Sandoval C, Burgos-Hernández A, Robles-Zepeda RE. In vitro antioxidant and antiproliferative activities of plants of the ethnopharmacopeia from northwest of Mexico. BMC complementary and alternative medicine. 2013; 13(1):1-8. https://doi.org/10.1186/1472-6882-13-12 PMid:23305162 PMCid:PMC3547710 DOI: https://doi.org/10.1186/1472-6882-13-12
Butkeviciute A, Petrikaite V, Jurgaityte V, Liaudanskas M, Janulis V. Antioxidant, anti-inflammatory, and cytotoxic activity of extracts from some commercial apple cultivars in two colorectal and glioblastoma human cell lines. Antioxidants. 2021; 10(7):1098. https://doi.org/10.3390/antiox10071098 PMid:34356331 PMCid:PMC8301036 DOI: https://doi.org/10.3390/antiox10071098
Vasile M, Bunea A, Ioan CR, Ioan BC, Socaci S, Viorel M. Phytochemical Content and Antioxidant Activity of Malus domestica Borkh Peel Extracts. Molecules. 2021; 26(24):7636. https://doi.org/10.3390/molecules26247636 PMid:34946718 PMCid:PMC8709341 DOI: https://doi.org/10.3390/molecules26247636
Ansari SH, Islam F, Sameem M. Influence of nanotechnology on herbal drugs: A review. Journal of Advanced Pharmaceutical Technology and Research. 2012; 3(3):142. https://doi.org/10.4103/2231-4040.101006 PMid:23057000 PMCid:PMC3459443 DOI: https://doi.org/10.4103/2231-4040.101006
Wahab AW, Karim A, Sutapa IW. Bio-synthesis of gold nanoparticles through bioreduction using the aqueous extract of Muntingia calabura L. leaf. Oriental Journal of Chemistry. 2018; 34(1):401. https://doi.org/10.13005/ojc/340143 DOI: https://doi.org/10.13005/ojc/340143
Lowry GV, Hill RJ, Harper S, Rawle AF, Hendren CO, Klaessig F, Nobbmann U, Sayre P, Rumble J. Guidance to improve the scientific value of zeta-potential measurements in nano EHS. Environmental Science: Nano. 2016; 3(5):953-65. https://doi.org/10.1039/C6EN00136J DOI: https://doi.org/10.1039/C6EN00136J
Rasmussen MK, Pedersen JN, Marie R. Size and surface charge characterization of nanoparticles with a salt gradient. Nature Communications. 2020; 11(1):1-8. https://doi.org/10.1038/s41467-020-15889-3 PMid:32393750 PMCid:PMC7214416 DOI: https://doi.org/10.1038/s41467-020-15889-3
Jadid N, Hidayati D, Hartanti SR, Arraniry BA, Rachman RY, Wikanta W. Antioxidant activities of different solvent extracts of Piper retrofractum Vahl. using DPPH assay. InAIP conference proceedings. AIP Publishing LLC. 2017; 1854(1):020019. https://doi.org/10.1063/1.4985410 DOI: https://doi.org/10.1063/1.4985410
Lalhminghlui K, Jagetia GC. Evaluation of the free-radical scavenging and antioxidant activities of Chilauni, Schima wallichii Korth in vitro. Future science OA. 2018; 4(2): FSO272. https://doi.org/10.4155/fsoa-2017-0086 PMid:29379645 PMCid:PMC5778377 DOI: https://doi.org/10.4155/fsoa-2017-0086
Phongpaichit S, Nikom J, Rungjindamai N, Sakayaroj J, Hutadilok-Towatana N, Rukachaisirikul V, Kirtikara K. Biological activities of extracts from endophytic fungi isolated from Garcinia plants. FEMS Immunology and Medical Microbiology. 2007; 51(3):517-25. https://doi.org/10.1111/j.1574-695X.2007.00331.x PMid:17888010 DOI: https://doi.org/10.1111/j.1574-695X.2007.00331.x
Pertiwi RD, Yari CE, Putra NF. Uji aktivitas antioksidan ekstrak etanol limbah kulit buah apel (Malus domestica Borkh.) terhadap radikal bebas DPPH (2,2-diphenyl-1-picrylhydrazil). Jurnal Ilmiah Manuntung. 2016; 2(1):81-92. https://doi.org/10.51352/jim.v2i1.51 DOI: https://doi.org/10.51352/jim.v2i1.51
Utami S, Endrini S, Nafik S, Lestari IM, Anindya D, Bakar EA, Rozy F, Said FF, Afifah E, Arumwardana S, Nufus H. In vitro antioxidant and anti-obesity activities of freeze-dried Canarium sp., Averrhoa bilimbi L. and Malus domestica. The Indonesian Biomedical Journal. 2019; 11(3):320-6. https://doi.org/10.18585/inabj.v11i3.728 DOI: https://doi.org/10.18585/inabj.v11i3.728
Özen T, Kinalioğlu K. Determination of antioxidant activity of various extracts of Parmelia saxatilis. Biologia. 2008; 63(2):211-6. https://doi.org/10.2478/s11756-008-0047-6 DOI: https://doi.org/10.2478/s11756-008-0047-6
Patil S, Rajiv P, Sivaraj R. An investigation of antioxidant and cytotoxic properties of green synthesized silver nanoparticles. Indo American Journal of Pharmaceutical Sciences. 2015; 2(10):1453-9.
Rahim NA, Zakaria N, Dzulkarnain SM, Azahar NM, Abdulla MA. Antioxidant activity of Alstonia angustifolia ethanolic leaf extract. In AIP Conference Proceedings. AIP Publishing LLC. 2017; 1891(1): 020012. https://doi.org/10.1063/1.5005345 DOI: https://doi.org/10.1063/1.5005345