Synthesis and Characterization of a-SixCy Thin Films Prepared by RF Magnetron Co-Sputtering Technique
DOI:
https://doi.org/10.18311/jsst/2019/20961Keywords:
Annealing, Si-Rich Silicon carbide, Sputtering, Thin FilmsAbstract
Si-C based alloys have attracted much attention due to their potential applications in electronic and optical devices. In this paper, a-SixCy thin films with different Silicon (Si) content are obtained by sputtering of SiC; co-sputtering of SiC and Si targets at different deposition temperatures (Td) such as 200oC, 350oC and 500oC. It is annealed at various annealing temperature (Ta) using conventional thermal annealing (CTA) and Rapid Thermal Annealing (RTA) techniques. The effect of excess Si incorporation and the unintentional oxidation during various stages of sample preparation are discussed. Their structural and optical properties are investigated using spectroscopic ellipsometry, X-Ray Diffraction spectroscopy (XRD), and Fourier Transform Infrared spectroscopy (FTIR). The refractive index value (n1.95eV) varies between 1.6 to 3.6, suggesting the transition from porous silicon carbide to Si-rich silicon carbide or silicon oxycarbide upon increasing Td and Ta, which is also supported by the FTIR spectra. The emergence of absorption peak between ~950 cm−1 and 1100 cm−1 with the increase of Ta and excess silicon is attributed to Si-O a stretching vibration bond which is an indication of Si richness and unintentional oxidation during annealing. Detailed analysis on the process parameters and the evolution of phase transformations are discussed.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
Accepted 2018-07-05
Published 2020-01-31
References
W. J. Choyke, H. Matsunami and G. Pensl, ‘Silicon Carbide: Recent Major Advances', 2nd Edn. Springer, New York, (2003). PMCid:PMC1180594 DOI: https://doi.org/10.1007/978-3-642-18870-1
F. Nava, G. Bertuccio, A. Cavallini and E. Vittones, Meas. Sci. Tech., 19, 102001 (2008). https://doi.org/10.1088/09570233/19/10/102001 DOI: https://doi.org/10.1088/0957-0233/19/10/102001
P. M. Sarro, Sensor. Actuator. Phys., 82, 210 (2000). https:// doi.org/10.1016/S0924-4247(99)00335-0 DOI: https://doi.org/10.1016/S0924-4247(99)00335-0
J. P. Conde, V. Chu, F. Da Silva, A. Kling, Z. Dai, J. C. Soares, S. Arekat, A. Fedorov, M. N. Berberan-Santos F. Giorgisand C. F. Pirri, J. Appl. Phys., 85, 3327 (1999). DOI: https://doi.org/10.1063/1.369679
L. Gou, C. Qi, J. Ran, and C. Zheng, Thin Solid Films, 345, 42 (1999). https://doi.org/10.1016/S0040-6090(99)00070-X DOI: https://doi.org/10.1016/S0040-6090(99)00070-X
A. K. Costa, J. R.Camargo, S. S. Achete and C.A. Carius, Thin Solid Films, 243, 377 (2000) DOI: https://doi.org/10.1016/S0040-6090(00)01321-3
R. Gerhardt, ‘Silicon carbide based transit time devices', Moumita Mukherjee: ‘The New Frontier in High-power THz Electronics, in InTech, (2011).
J. Huran, A.Valović, P. Boháćek, V.N Shvetsov, A.P. Kobzev, S.B. Borzakov, A. Kleinov, M.Sekáćová, J.Arbet, and V. Sasinková, Appl. Surf. Sci., 269, 88 (2013). https://doi.org/10.1016/j.apsusc.2012.10.162 DOI: https://doi.org/10.1016/j.apsusc.2012.10.162
A. Karakuscu, A. Ponzoni, P. R. Aravind, G. Sberveglieri, G. D. Soraru, J. Am. Ceram. Soc., 96, 2366 (2013). https://doi.org/10.1111/jace.12491 DOI: https://doi.org/10.1111/jace.12491
M. Wilamowska-Zawlocka, P. Puczkarski, Z. Grabowska, J. Kaspar, M. Graczyk-Zajac, R. Riedel and G. D. Soraru, RSC Adv., 6, 104597 (2016). DOI: https://doi.org/10.1039/C6RA24539K
S. Gallis, V. Nikas and A. E. Kaloyeros, ‘Modern Technologies for Creating the Thin-film Systems and Coatings': Silicon Oxycarbide Thin films and Nanostructures: Synthesis, Properties and Applications, InTech (2006). PMCid:PMC3660141
J. Y. Fan, X. L. Wu and K. P. K. Chu, Progr. Mater. Sci., 51, 983 (2006). https://doi.org/10.1016/j.pmatsci.2006.02.001 DOI: https://doi.org/10.1016/j.pmatsci.2006.02.001
M. A.Ouadfel, A. Keffous, A. Brighet, N. Gabouze, T. Hadjersi, A. Cheriet, M. Kechouane, A. Boukezzata, Y. Boukennous, Y. Belkacem and H. Menari, Appl. Surf. Sci., 265, 94 (2013). https://doi.org/10.1016/j.apsusc.2012.10.129 DOI: https://doi.org/10.1016/j.apsusc.2012.10.129
D. Song, E. C. Cho, Y. H. Cho, G. Conibeer, Y. Huang, S. Huang and M. A. Green, Thin Solid Films, 516, 3824 (2008). https://doi.org/10.1016/j.tsf.2007.06.150 DOI: https://doi.org/10.1016/j.tsf.2007.06.150
M. Künle, T. Kaltenbach, P. Löper, A. Hartel, S. Janz, O. Eibl and K. G. Nickel, Thin Solid Films, 519, 151 (2010). https:// doi.org/10.1016/j.tsf.2010.07.085 DOI: https://doi.org/10.1016/j.tsf.2010.07.085
M.Yazdanfar, H. Pedersen, P. Sukkaew, I. G. Ivanov, í–. Danielsson, O. Kordina and E. Janzén, J. Cry Grow., 390, 24 (2014). DOI: https://doi.org/10.1016/j.jcrysgro.2013.12.033
F. Maury, J. M. Agullo, J. Sur and Coat Tech., 1, 19 (1995).
E. Pascual, J. L. Andlijar, E. Fernhndez and E. Bertran, J. Dia. Rel. Mat., 4, 1205, (1995) https://doi.org/10.1016/09259635(95)00296-0 DOI: https://doi.org/10.1016/0925-9635(95)00296-0
C. Iliescu and D. P. Poenar, ‘Physics and Technology of Silicon Carbide Devices Solution. Chapter 5., PECVD Amorphous Silicon Carbide (α-SiC) Layers for MEMS Applications', InTech, (2013). DOI: https://doi.org/10.5772/51224
M. Quadfel, C. Yaddaden, S. Merazga, Cheriet, L. Talb, S. Kaci and H. Menari, J. Alloy Comp, 579, 365 (2013). DOI: https://doi.org/10.1016/j.jallcom.2013.06.029
N. Ledermann, J. Baborowski, P. Muralt, N. Xantopoulos and J. M. Tellenbach, J. Sur. and Coat Tech., 125, 246 (2000). DOI: https://doi.org/10.1016/S0257-8972(99)00568-X
S. S. Baskar and R. P. Nalini, Mater. Today, 3, 2121 (2016). https://doi.org/10.1016/j.matpr.2016.04.117 DOI: https://doi.org/10.1016/j.matpr.2016.04.117
H. S. Medeiros, R. S. Pessoa, J. C. Sagás, M. A. Fraga, L. V. Santos, H. S. Maciel, M. Massi, and A. S. Da Silva Sobrinho, Mater. Sci. Forum., 717-720, 197, (2012). https://doi.org/10.4028/www.scientific.net/MSF.717-720.197 DOI: https://doi.org/10.4028/www.scientific.net/MSF.717-720.197
J. López-vidrier, S. Hernández, J. Samí , M. Canino, M. Allegrezza and M. Bellettato, J. Mater. Sci. Eng. B., 178(9), 639 (2013). https://doi.org/10.1016/j.mseb.2012.10.015 DOI: https://doi.org/10.1016/j.mseb.2012.10.015
Y. Rui, S. Li, Y. Cao, J. Xu, W. Li and K. Chen, J. App Sur Sci, 269, 37 (2013). DOI: https://doi.org/10.1016/j.apsusc.2012.09.118
J. Moon, S. J. Baik, O. Byungsung and J. C. Lee, J. Nanoscale Res Lett, 7, 503, (2012). https://doi.org/10.1186/1556276X-7-503 PMid:22953733 PMCid:PMC3493276 DOI: https://doi.org/10.1186/1556-276X-7-503
R. Gradmann, P. Loeper, M. Künle, M. Rothfelder, S. Janz, M. Hermle, and S. Glunz, Phys. Status. Solidi. C., 8(3), 831 (2011) https://doi.org/10.1002/pssc.201000176 DOI: https://doi.org/10.1002/pssc.201000176
Y. Peng, J. Zhou, X. Zheng, B. Zhao and X. Tan, J. Mod Phy B, 25(22), 2983 (2011). https://doi.org/10.1142/ S0217979211100412 DOI: https://doi.org/10.1142/S0217979211100412
J. Fan, H. Li, J. Wang and M. Xiao, Appl. Phys. Lett., 101, 131906, 6 (2012). DOI: https://doi.org/10.1063/1.4755778
G. Scardera, T. Puzzer, G. Conibeer, and M. A. Green, J. Appl. Phys.,104, 10, (2008). https://doi.org/10.1063/1.3021158 DOI: https://doi.org/10.1063/1.3021158
F. Demichelis, Phys. B Condens. Matter., 205,169 (1995). https://doi.org/10.1016/0921-4526(94)00233-L DOI: https://doi.org/10.1016/0921-4526(94)00233-L
S. Janz, ‘Amorphous Silicon Carbide for Photovoltaic Applications', in KOPS - The Institutional Repository of the University of Konstanz, 1–227, (2006).
Q. Cheng, S. Xu and K. Ostrikov, Acta. Mater., 58(2), 560 (2010). https://doi.org/10.1016/j.actamat.2009.09.034 DOI: https://doi.org/10.1016/j.actamat.2009.09.034
A. Kole and P. Chaudhuri, Thin Solid Films, 522, 45 (2012). https://doi.org/10.1016/j.tsf.2012.02.078 DOI: https://doi.org/10.1016/j.tsf.2012.02.078
G. Chang, F. Ma, D. Ma and K. Xu, Nanotechnology, 21, 465605 (2010). https://doi.org/10.1088/0957-4484/21/46/465605 PMid:20975214 DOI: https://doi.org/10.1088/0957-4484/21/46/465605
X. J. Hao, E.-C. Cho, G. Scardera, Y. S. Shen, E. BelletAmalric, D. Bellet, G. Conibeer and M. A. Green, Sol. Energ. Mater. Sol. Cell., 93, 1524 (2009). https://doi.org/10.1016/j.solmat.2009.04.002 DOI: https://doi.org/10.1016/j.solmat.2009.04.002
G. Wen, X. Zeng, W. Liao and C. Cao, Thin Solid Films, 552, 18 (2014). https://doi.org/10.1016/j.tsf.2013.12.001 DOI: https://doi.org/10.1016/j.tsf.2013.12.001
T. Rajagopalan, X. Wang, B. Lahlouh, C. Ramkumar, P. Dutta and S. Gangopadhyay, J. Appl. Phy., 94, 5252 (2003). https://doi.org/10.1063/1.1609631 DOI: https://doi.org/10.1063/1.1609631
K. Surana, H. Lepage, J. M. Lebrun, B. Doisneau, D. Bellet, L. Vandroux, G. Le Carval, M. Baudrit, P. Thony and P. Mur, Nanotechnology, 23, 105401 (2012). https://doi.org/10.1088/0957-4484/23/10/105401 PMid:22348886 DOI: https://doi.org/10.1088/0957-4484/23/10/105401
S. W. King, M. French, J. Bielefeld and W. A. Lanford, J. Non. Cryst. Solids, 357, 2970 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.04.001 DOI: https://doi.org/10.1016/j.jnoncrysol.2011.04.001
S. Kerdiles, A. Berthelot, F. Gourbilleau and R. Rizk, Appl. Phys. Lett., 76, 24 (2000). https://doi.org/10.1063/1.126350 DOI: https://doi.org/10.1063/1.126350
S. Yamada, Y. Kurokawa, S. Miyajima and M. Konagai, Nanoscale Research Letters, 9, 246 (2014) https://doi.org/10.1186/1556-276X-9-246 DOI: https://doi.org/10.1186/1556-276X-9-246
D. Krcho, ‘FTIR Spectroscopy for Silicon Solar Cell' in Characterisation Proceedings of Solar ‘97 - Australian and New Zealand Solar Energy Society (1997).