Synthesis, Surface Active Properties and Antimicrobial Activity of Novel Ester – Amidoamine Linked Double Tailed Cationic Surfactants

Jump To References Section

Authors

  • Department of Chemical Engineering, Institute of Chemical Technology, Mumbai – 400019, Maharashtra ,IN
  • Department of Chemical Engineering, Institute of Chemical Technology, Mumbai – 400019, Maharashtra ,IN

DOI:

https://doi.org/10.18311/jsst/2021/24652

Keywords:

Double Tailed Ester-Amidoamine, Critical Micelle Concentration, Quaternization, Surfactant, Synthesis
Surfactants

Abstract

Three novel ester-amidoamine linked cationic surfactants bearing a double tail were synthesized. Their chemical structures were interpreted with FTIR, 1H and 13C NMR spectroscopy. These surfactants consist of hydrophobes that may be obtained from sustainable resources. The objective was to synthesize a double tailed amidoamine having two functional groups in the structure and to investigate the effect of these groups on the interfacial as well as physical properties of the surfactants. The interfacial properties of the surfactants were determined using tensiometry, conductometry measurements and dye solubilization techniques. The synthesized surfactants have been found to exhibit quite low CMC in comparison with conventional surfactants of similar structure. The effect of sodium chloride on their surface properties was also studied. They were found to possess good and stable foaming ability and wettability. All the synthesized surfactants delivered appreciable antimicrobial activity against three tested microorganisms, Staphylococcus aureus and Escherichia coli.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2023-02-15

How to Cite

Aher, K., & Bhagwat, S. S. (2023). Synthesis, Surface Active Properties and Antimicrobial Activity of Novel Ester – Amidoamine Linked Double Tailed Cationic Surfactants. Journal of Surface Science and Technology, 37(3-4), 141–157. https://doi.org/10.18311/jsst/2021/24652
Received 2019-12-20
Accepted 2022-05-21
Published 2023-02-15

 

References

M. Minguet, N. Subirats, P. Castan, T. Sakai, Int. J. Cosmet. Sci., 32, 246 (2010). https://doi.org/10.1111/j.1468-2494.2009.00566.x. PMid:20384902. DOI: https://doi.org/10.1111/j.1468-2494.2009.00566.x

M. Minguet, N. Subirats, P. Castan, 55th Sepawa Congr. Eur. Deterg. Conf. Proc., 174 (2008).

A.R. Tehrani-Bagha, K. Holmberg, Langmuir, 26, 9276 (2010). https://doi.org/10.1021/la1001336. PMid:20387872. DOI: https://doi.org/10.1021/la1001336

S.P. Sulakhe, S.S. Bhagwat, J. Surfactants Deterg., 16, 487 (2013). https://doi.org/10.1007/s11743-013-1436-6. DOI: https://doi.org/10.1007/s11743-013-1436-6

A.K. Ghumare, B. V. Pawar, S.S. Bhagwat, J. Surfactants Deterg., 16, 85 (2013). https://doi.org/10.1007/s11743-012-1406-4. DOI: https://doi.org/10.1007/s11743-012-1406-4

M. Yamane, T. Toyo, K. Inoue, T. Sakai, Y. Kaneko, N. Nishiyama, J. Oleo Sci., 57, 529 (2008). https://doi.org/10.5650/jos.57.529. PMid:18781053. DOI: https://doi.org/10.5650/jos.57.529

N. Anoune, M. Nouiri, C. Arnaud, S. Petit, P. Lanteri, J. Surfactants Deterg., 3, 381 (2000). https://doi.org/10.1007/s11743-000-0142-z. DOI: https://doi.org/10.1007/s11743-000-0142-z

W.H. Ansari, N. Fatma, M. Panda, Others, Soft Matter., 9, 1478 (2013). https://doi.org/10.1039/c2sm26926k. DOI: https://doi.org/10.1039/c2sm26926k

K. Holmberg, Novel Surfactants: Preparation Applications and Biodegradability, Revised and Expanded, Crc Press, 2003.

C. Kaur, P. Patial, S. Kaur, I. Ahmad, J. Dispers. Sci. Technol., (2013). https://doi.org/10.1080/01932691.201 2.751030.

J. Hoque, S. Gonuguntla, V. Yarlagadda, V.K. Aswal, J. Haldar, Phys. Chem. Chem. Phys., 16, 11279 (2014). https://doi.org/10.1039/C3CP55244F. PMid:24781007. DOI: https://doi.org/10.1039/C3CP55244F

K. Aher, S.S. Bhagwat, J. Surf. Sci. Technol., 34, 7 (2018). https://doi.org/10.18311/jsst/2018/18083. DOI: https://doi.org/10.18311/jsst/2018/18083

I.A. Aiad, S.M. Tawfik, S.M. Shaban, A.A. Abd-Elaal, M. El-Shafie, J. Surfactants Deterg., 17, 391 (2014). https://doi.org/10.1007/s11743-013-1512-y. DOI: https://doi.org/10.1007/s11743-013-1512-y

S.M. Shaban, I. Aiad, M.M. El-Sukkary, E.A. Soliman, M.Y. El-Awady, J. Mol. Liq., 203, 20 (2015). https://doi.org/10.1016/j.molliq.2014.12.033. DOI: https://doi.org/10.1016/j.molliq.2014.12.033

F.M. Menger, J.S. Keiper, V. Azov, Langmuir., 16, 2062 (2000). https://doi.org/10.1021/la9910576, DOI: https://doi.org/10.1021/la9910576

E. Fisicaro, C. Compari, M. Biemmi, E. Duce, M. Peroni, N. Barbero, G. Viscardi, P. Quagliotto, J. Phys. Chem. B., 112, 12312 (2008). https://doi.org/10.1021/jp804271z. PMid:18767790. DOI: https://doi.org/10.1021/jp804271z

A. Bhadani, S. Singh, Langmuir., 25, 11703 (2009). https://doi.org/10.1021/la901641f. PMid:19788223. DOI: https://doi.org/10.1021/la901641f

R.K. Mahajan, S. Mahajan, A. Bhadani, S. Singh, Phys. Chem. Chem. Phys., 14, 887 (2012). https://doi.org/10.1039/C1CP22448D. PMid:22119804. DOI: https://doi.org/10.1039/C1CP22448D

B. Cai, X. Li, Y. Yang, J. Dong, J. Colloid Interface Sci., 370, 111 (2012). https://doi.org/10.1016/j.jcis.2011.12.025. PMid:22261268. DOI: https://doi.org/10.1016/j.jcis.2011.12.025

V. Chauhan, S. Singh, R. Kamboj, R. Mishra, G. Kaur, J. Colloid Interface Sci., 417, 385 (2014). https://doi.org/10.1016/j.jcis.2013.11.059. PMid:24407701. DOI: https://doi.org/10.1016/j.jcis.2013.11.059

M. Zou, J. Dong, G. Yang, X. Li, Phys. Chem. Chem. Phys., 17, 10265 (2015). https://doi.org/10.1039/C5CP00180C. DOI: https://doi.org/10.1039/C5CP00180C

H. Wang, T. Kaur, N. Tavakoli, J. Joseph, S. Wettig, Phys. Chem. Chem. Phys., 15, 20510 (2013). DOI: https://doi.org/10.1039/c3cp52621f

M.B. Ahire, S.S. Bhagwat, J. Surfactants Deterg., 1-9 (n.d.).

A.R. Tehrani-Bagha, K. Holmberg, C.G. Van Ginkel, M. Kean, J. Colloid Interface Sci., 449, 72 (2015). https://doi.org/10.1016/j.jcis.2014.09.072. PMid:25446957. DOI: https://doi.org/10.1016/j.jcis.2014.09.072

G. Cerchiaro, A.M.D.C. Ferreira, A.B. Teixeira, H.M. Magalhães, A.C. Cunha, V.F. Ferreira, L.S. Santos, M.N. Eberlin, J.M.S. Skakle, S.M.S. V Wardell, Polyhedron., 25, 2055 (2006). https://doi.org/10.1016/j.poly.2006.01.002. DOI: https://doi.org/10.1016/j.poly.2006.01.002

M.E. Young, H.-L. Alakomi, I. Fortune, A.A. Gorbushina, W.E. Krumbein, I. Maxwell, C. McCullagh, P. Robertson, M. Saarela, J. Valero, Environ. Geol., 56, 631 (2008). https://doi.org/10.1007/s00254-008-1455-1. DOI: https://doi.org/10.1007/s00254-008-1455-1

R.E. Brubaker, H.J. Muranko, D.B. Smith, G.J. Beck, G. Scovel, J. Occup. Environ. Med., 21, 688 (1979).

P.T. Erskine, R. Newbold, J. Roper, A. Coker, M.J. Warren, P.M. Shoolingin-Jordan, S.P. Wood, J.B. Cooper, Protein Sci., 8, 1250 (1999). https://doi.org/10.1110/ps.8.6.1250. P DOI: https://doi.org/10.1110/ps.8.6.1250

J.H. Clint, Surfactant Aggregation, Springer Science & Business Media, 2012.

M.J. Rosen, Surfactants and Interfacial Phenomena (2nd end.) Wiley, New York. 39 (1989).

J. Ross, G.D. Miles, Oil Soap., 18, 99 (1941). https://doi.org/10.1007/BF02545418. DOI: https://doi.org/10.1007/BF02545418

P.R. Garrett, P.R. Moore, J. Colloid Interface Sci., 159, 214 (1993). https://doi.org/10.1006/jcis.1993.1315. DOI: https://doi.org/10.1006/jcis.1993.1315

R.S. Powale, S.S. Bhagwat, J. Dispers. Sci. Technol., 27, 1181 (2006). https://doi.org/10.1080/01932690600859804. DOI: https://doi.org/10.1080/01932690600859804

S. Desai, S.S. Bhagwat, J. Surfactants Deterg., 19, 1169 (2016). https://doi.org/10.1007/s11743-016-1874-z. DOI: https://doi.org/10.1007/s11743-016-1874-z

Y. Yuan, T.R. Lee, Surf. Sci. Tech., Springer, 3 (2013). https://doi.org/10.1007/978-3-642-34243-1_1. DOI: https://doi.org/10.1007/978-3-642-34243-1_1

G. Viscardi, P. Quagliotto, C. Barolo, P. Savarino, E. Barni, E. Fisicaro, J. Org. Chem., 65, 8197 (2000). https://doi.org/10.1021/jo0006425. PMid:11101373. DOI: https://doi.org/10.1021/jo0006425

S. Kantham, J Pharm Sci Res., 3, 1284 (2011).

S. Kanjilal, S. Sunitha, P.S. Reddy, K.P. Kumar, U.S.N. Murty, R.B.N. Prasad, Eur. J. Lipid Sci. Technol., (2009). https://doi.org/10.1002/ejlt.200800292. DOI: https://doi.org/10.1002/ejlt.200800292

M.S. Bakshi, J. Colloid Interface Sci., 227, 78 (2000). https://doi.org/10.1006/jcis.2000.6866. PMid:10860597. DOI: https://doi.org/10.1006/jcis.2000.6866

R. Parveen, A. Datta, P.K. Maiti, J. Surf. Sci. Technol., 36, 137 (2020). https://doi.org/10.18311/jsst/2020/24875. DOI: https://doi.org/10.18311/jsst/2020/24875

L. Casal-Dujat, M. Rodrigues, A. Yagüe, A.C. Calpena, D.B. Amabilino, J. González-Linares, M. Borràs, L. Pérez-Garcia, Langmuir., 28, 2368 (2012). https://doi. org/10.1021/la203601n. PMid:22032629. DOI: https://doi.org/10.1021/la203601n

A. Mandal, S. Sekar, N. Chandrasekaran, A. Mukherjee, T. Sastry, J. Mater. Chem. B., 3, 3032 (2015). https://doi.org/10.1039/C4TB02124J. PMid:32262503. DOI: https://doi.org/10.1039/C4TB02124J

A. Mandal, S. Sekar, N. Chandrasekaran, A. Mukherjee, T. Sastry, K. Meera, A. B. Mandal, RSC Advances, 5, 15763 (2015). https://doi.org/10.1039/C4RA09694K. DOI: https://doi.org/10.1039/C4RA09694K

A. Mandal, V. Meda, W.J. Zhang, K.M. Farhan, A. Coll Surf B Bioint. 90, 191 (2012). https://doi.org/10.1016/j.colsurfb.2011.10.021. DOI: https://doi.org/10.1016/j.colsurfb.2011.10.021