Concentration of Capping Agent Controls Size Selection, Agglomeration and Antimicrobial Action of Silver Nanoparticles
DOI:
https://doi.org/10.18311/jsst/2020/24875Keywords:
Coalescence, Minimum Inhibitory Concentration, Polyvinyl Alcohol, Silver NanoparticlesAbstract
Polyvinyl Alcohol (PVA) capped Ag nanoparticles (AgNPs) formed through reduction of Silver Nitrate (AgNO3) by Sodium Borohydride (NaBH4) were studied for different PVA concentrations (C, %w/w of solution) in the bulk. Diameter (DAg) of Ag metallic core, obtained from plasmon resonance in Ultraviolet-Visible spectra, had a peak (≈12.8 nm) at C~0.24, which almost exactly matched the gyration sphere diameter of PVA molecule (∼13 nm). Cluster diameter (Dcl), measured after a month through Dynamic Light Scattering (DLS) study, gave the number of NPs per cluster showing a dip at C∼0.24. Minimum inhibitory concentration (MIC) of AgNPs on Escherichia coli (E. coli), assayed from standard broth dilution method (CLSI M07-A8), showed MIC of 0.66 μg/ml at the PVA concentration of 0.24%. Scanning Electron Microscopy (SEM) showed NP clusters accumulating over E. coli to have Dcl ∼ DAg whereas those lying outside the bacteria to have Dcl ∼ 3DAg, consistent with a strong size selectivity of antimicrobial efficacy.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
Accepted 2020-12-17
Published 2021-04-09
References
S. Kheybari, N Samadi, S.V. Hosseini, A. Fazeli and M.R. Fazeli. DARU J. Pharma. Sci., 18, 168 (2010).
B. Li and T.J. Webster. J Orthop Res., 36, 22 (2018). https://doi.org/10.1002/jor.23656. PMid: 28722231, PMCid: PMC5775060. DOI: https://doi.org/10.1002/jor.23656
V. Shriram, T. Khare, R. Bhagwat and R. Shukla, V. Kumar. Front. Microbiol., 9, 2990 (2018). https://doi.org/10.3389/ fmicb.2018.02990. PMid: 30619113, PMCid: PMC6295477.
K.F. Kong, L. Schneper and K. Mathee. APMIS, 118, 1 (2010). https://doi.org/10.1111/j.1600-0463.2009.02563.x. PMid: 20041868, PMCid: PMC2894812. DOI: https://doi.org/10.1111/j.1600-0463.2009.02563.x
A.L. Peter. Adv. Drug Deliv. Rev., 57, 1471 (2005). https://doi.org/10.1016/j.addr.2005.04.003. PMid: 15964098. DOI: https://doi.org/10.1016/j.addr.2005.04.003
A.L. Lerminiaux and A.D.S. Cameron. Can. J. Microbiol., 65, 34 (2019). https://doi.org/10.1139/cjm-2018-0275. PMid: 30248271. DOI: https://doi.org/10.1139/cjm-2018-0275
S. Galdiero, S. Mariateresa, M. Vitiello, M. Cantisani, V. Marra and M. Galdiero. Molecules., 16, 8894 (2011). https:// doi.org/10.3390/molecules16108894. PMid: 22024958, PMCid: PMC6264685. DOI: https://doi.org/10.3390/molecules16108894
O.V. Khorolskyi. Ukr. J. Phys., 63, 144 (2018). https://doi.org/10.15407/ujpe63.2.144. DOI: https://doi.org/10.15407/ujpe63.2.144
M.A. Gatoo, S. Naseem, M.Y. Arfat, A.M. Dar, K. Qasim and S. Zubair. Biomed Res Int., 498420, 1 (2014). https://doi.org/10.1155/2014/498420. PMid: 25165707, PMCid: PMC4140132. DOI: https://doi.org/10.1155/2014/498420
B.A. Cristina, O. Gherasim, A.M. Grumezescu, L. Mogoantćƒ, A. Ficai and E. Andronescu, Nanomaterials (Basel, Switzerland), 8, 681 (2018). https://doi.org/10.3390/ nano8090681. PMid: 30200373, PMCid: PMC6163202. DOI: https://doi.org/10.3390/nano8090681
S.K. Das, M.M.R. Khan, T. Parandhaman, F. Laffir, A.K. Guha, G. Sekaranaand and A.B. Mandal. Nanoscale, 5, 5549 (2013). https://doi.org/10.1039/c3nr00856h. PMid: 23680871. DOI: https://doi.org/10.1039/c3nr00856h
A. Mandal, V. Meda, W.J. Zhang, K.M. Farhan and A. Gnanamani. Colloids Surfaces B: Biointerfaces, 90, 191 (2012). https://doi.org/10.1016/j.colsurfb.2011.10.021. DOI: https://doi.org/10.1016/j.colsurfb.2011.10.021
A. Mandal, R.S.G. Krishnan, S. Thennarasu, S. Panigrahi and A.B. Mandal. Colloids Surfaces B: Biointerfaces, 79, 136 (2010). https://doi.org/10.1016/j.colsurfb.2010.03.042. DOI: https://doi.org/10.1016/j.colsurfb.2010.03.042
B. Naskar, S. Ghosh and S.P. Moulik. Langmuir, 28, 7134 (2012). https://doi.org/10.1021/la3000729. PMid: 22506970. DOI: https://doi.org/10.1021/la3000729
S. Das, A. Bhattacharya, N. Debnath, A. Datta and A. Goswami. Appl. Microbiol. Biotechnol., 97, 6019 (2013). https://doi.org/10.1007/s00253-013-4868-z. PMid: 23588933. DOI: https://doi.org/10.1007/s00253-013-4868-z
L. Wang, C. Hu and L. Shao. Int. J. Nanomedicine., 12, 1227 (2017). https://doi.org/10.2147/IJN.S121956. PMid: 28243086, PMCid: PMC5317269. DOI: https://doi.org/10.2147/IJN.S121956
S. Das, N. Debnath, S. Mitra, A. Datta and A. Goswami. BioMetals., 25, 1009 (2012). https://doi.org/10.1007/ s10534-012-9567-1. PMid: 22752843. DOI: https://doi.org/10.1007/s10534-012-9567-1
C.F. Ponce, J.P.N Miranda, D.M. Santos, E. Aguado, F.G. Cozar and R. Litrán. J. Nanopart Res., 20, 305 (2018). https://doi.org/10.1007/s11051-018-4406-0. PMid: 30524191, PMCid: PMC6244783. DOI: https://doi.org/10.1007/s11051-018-4406-0
O. Choi, K.K. Deng, N.J. Kim, L.J. Ross, R.Y. Surampalli and Z. Hu. Water Research, 42, 3066 (2008). https://doi.org/10.1016/j.watres.2008.02.021 DOI: https://doi.org/10.1016/j.watres.2008.02.021
A. Mandal, S. Sekar, K.M.S. Meera, A. Mukherjee, T.P. Sastry and A.B. Mandal. Physical Chemistry Chemical Physics, 16, 20175 (2014). https://doi.org/10.1039/C4CP02554G. PMid: 25138771. DOI: https://doi.org/10.1039/C4CP02554G
A. Mandal, S. Sekar, M. Kanagavel, N. Chandrasekaran, A. Mukherjee and T.P. Sastry. Biochimical et Biophysical Acta (BBA)-General Subjects, 1830, 4628 (2013). https://doi.org/10.1016/j.bbagen.2013.05.018. PMid: 23707714. DOI: https://doi.org/10.1016/j.bbagen.2013.05.018
A. Mandal, S. Sekar, N. Chandrasekaran, A. Mukherjee and T.P. Sastry. J. Mater. Chem B., 3, 3032 (2015). https://doi.org/10.1039/C4TB02124J. PMid: 32262503. DOI: https://doi.org/10.1039/C4TB02124J
A. Mandal, S. Sekar, N. Chandrasekaran, A. Mukherjee and T.P. Sastry. RSC Advances, 5, 15763 (2015). https://doi.org/10.1039/C4RA09694K. DOI: https://doi.org/10.1039/C4RA09694K
A. Mandal, S. Sekar, N. Chandrasekaran, A. Mukherjee and T.P. Sastry. Proceedings of the Institution of Mechanical Engineers, Part H. Journal of Engineering in Medicine, 227, 1224 (2013). https://doi.org/10.1177/0954411913499290 DOI: https://doi.org/10.1177/0954411913499290
A. Kć™dziora, M. Speruda, E. Krzyżewska, J. Rybka, A. Åukowiak and G.B. PÅ‚oskoÅ„ska. Int. J. Mol. Sci., 19, 444 (2018). https://doi.org/10.3390/ijms19020444. PMid: 29393866, PMCid: PMC5855666. DOI: https://doi.org/10.3390/ijms19020444
M. Ghanipour and D. Dorranian. Journal of Nano Medicine, 2013, 897043 (2013). https://doi.org/10.1155/2013/897043. DOI: https://doi.org/10.1155/2013/897043
C. Willard. The Effects of K1F bacteriophage on the EV36 strain of E. coli. http://www2.optics.rochester.edu/workgroups/cml/me111/sp98projects/courtney/index.html.
B. Lugtenberg. Trends Biochem. Sci., 6, 262 (1981). https:// doi.org/10.1016/0968-0004(81)90095-5. DOI: https://doi.org/10.1016/0968-0004(81)90095-5
X. Mu and Z. Zhong. Int. J. Pharm., 318, 55 (2006). https://doi.org/10.1016/j.ijpharm.2006.03.016. PMid: 16624507. DOI: https://doi.org/10.1016/j.ijpharm.2006.03.016
K.K.Y. Ho, J.W. Lee, D. Gregory, S. Majumdar and A.P. Liu. PLoS ONE., 12, e0174689 (2017). https://doi.org/10.1371/journal.pone.0174689. PMid: 28358875, PMCid: PMC5373588. DOI: https://doi.org/10.1371/journal.pone.0174689
B. Ravinathan, K. Shunmugavel, S. Subramanian, V.P. Dharmalingam, V. Naranappa, M. Sampath and P. Manavalan. Polym Plast Technol Eng., 55, 889 (2016). https://doi.org/10.1080/03602559.2015.1103263 DOI: https://doi.org/10.1080/03602559.2015.1103263