Mn (II) Adsorption on Activated Carbon Derived from Amaro (Spondias pinnata) Seed Stone

Jump To References Section

Authors

  • Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu – 44613 ,NP
  • Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu – 44613 ,NP

DOI:

https://doi.org/10.18311/jsst/2020/25657

Keywords:

Activated Carbon, Amaro Seed, Manganese Ion, Muffle Furnace, Phosphoric Acid
Adsorption, Activated carbon

Abstract

Amaro (Spondias pinnata) seed stone powder was activated using phosphoric acid and carbonized in a muffle furnace at three different temperatures, viz. 300, 400 and 500oC (PAC-300, PAC-400 and PAC-500) to produced Activated Carbons (ACs). Thus, obtained ACs are characterized using Boehm titration, iodine number and scanning electron microscopy (SEM). The observed results attributed that PACs contained irregular sized and shaped particles with well-developed pores, which mostly consisted of carboxyl and phenolic functional groups. Among the ACs, PAC-400 had a highest values of methylene blue number, iodine number and specific surface area, which were 181mg/g, 371.02 mg/g and 582 m2/g, respectively. For the 150 mg/L of methylene blue concentration the adsorption capacity of all the PACs was 100% and the adsorption isotherm followed Langmuir isotherm with Qmax of 256.41 mg/g. Within 2 hours at pH 5, PAC-400 removed as high as 94% of Mn(II) ion from 25 mg/L and up to 40% from 400 mg/L concentration of manganese from an aqueous solution. The adsorption kinetics described pseudo second order kinetics indicating chemisorption. All the results attributed that the phosphoric acid activated amaro seed stone can be used as efficient adsorbent to absorb manganese from an aqueous solution.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2021-04-09

How to Cite

Pradhananga Adhikari, M., & Thapa, A. (2021). Mn (II) Adsorption on Activated Carbon Derived from Amaro (<i>Spondias pinnata</i>) Seed Stone. Journal of Surface Science and Technology, 36(3-4), 147–159. https://doi.org/10.18311/jsst/2020/25657

 

References

Y. I. El-Sherif, N. Fathy and A. A. Hanna, J. Appl. Sci. Res., 9, 233 (2013).

A. B. Jusoh, W. H. Chang and W. M. Low, Desalination, 182, 347 (2005). https://doi.org/10.1016/j.desal.2005.03.022. DOI: https://doi.org/10.1016/j.desal.2005.03.022

J. N. Halder and M. N. Islam, Journal of Environment and Human, 2, 36 (2015). https://doi.org/10.15764/ EH.2015.01005. DOI: https://doi.org/10.15764/EH.2015.01005

M. Aschner, B. Luckey and A. Tremblay, Neuro Toxicology, 27, 733 (2006). https://doi.org/10.1016/j.neuro.2005.10.005. PMid:16325914. DOI: https://doi.org/10.1016/j.neuro.2005.10.005

WHO, Manganese in Drinking-Water: Background Document of WHO Guidelines for Drinking-Water Quality 2011, World Health Organization, Geneva.

C. A. Bastida, V. M. Miranda, G.V. Mejia, M. S. Rios and E. T Flore, Science of the Total Environment, 447, 10 (2013). https://doi.org/10.1016/j.scitotenv.2013.01.005. PMid:23376288. DOI: https://doi.org/10.1016/j.scitotenv.2013.01.005

D. S. Patil, S. M. Chavan and J. U. K. Oubagaranadin, J. Environ. Chem. Eng., 4, 468 (2016). https://doi.org/10.1016/j.jece.2015.11.028. DOI: https://doi.org/10.1016/j.jece.2015.11.028

C. Dalai, V.R. Desai and R. Jha, Aquatic Procedia, 4, 1126 (2015). https://doi.org/10.1016/j.aqpro.2015.02.143. DOI: https://doi.org/10.1016/j.aqpro.2015.02.143

A. Omri and M. Benzina, Alexandria Engineering Journal, 51, 343 (2012). https://doi.org/10.1016/j.aej.2012.06.003. DOI: https://doi.org/10.1016/j.aej.2012.06.003

B.N. Thomas and S.C. George, J. of Ime. Pub., 1, 1. (2015). https://doi.org/10.21767/2471-9889.100007. DOI: https://doi.org/10.21767/2471-9889.100007

M. A. Yahya, Z. Al-Qodah and C.W. Ngah, Renewable and Sustainable Energy Review, 46, 218 (2015). https://doi.org/10.1016/j.rser.2015.02.051. DOI: https://doi.org/10.1016/j.rser.2015.02.051

M. S. El-Geundi, Adsorp. Sci. Technol., 15, 777 (1997). https://doi.org/10.1177/026361749701501004. DOI: https://doi.org/10.1177/026361749701501004

S.M. Molina and R.F. Rodriguez, Physiochem. Eng. Aspects, 214, 15 (2004). https://doi.org/10.1016/j.colsurfa.2004.04.007. DOI: https://doi.org/10.1016/j.colsurfa.2004.04.007

J, Donald, Y. Ohtsuka and C.C. Xu, Mater. Lett., 65, 744(2011). https://doi.org/10.1016/j.matlet.2010.11.049. DOI: https://doi.org/10.1016/j.matlet.2010.11.049

P. T. Williams and A. R. Reed, Biomass and Bioenergy, 30(2), 144 (2006). https://doi.org/10.1016/j.biombioe.2005.11.006. DOI: https://doi.org/10.1016/j.biombioe.2005.11.006

J. F. Gonzalez, S. Roman, C.M. Gonzalez-Garcia, J.M.V Nabais and A.L Ortiz, Ind. Eng. Chem. Res., 48, 7474(2009). https://doi.org/10.1021/ie801848x. DOI: https://doi.org/10.1021/ie801848x

R. R. Pradhananga, L. Adhikari, R.G. Shrestha, M. P. Adhikari, R. Rajbhandari, K. Ariga and L. K. Shrestha, WJ. of Carbon Research, 3, 2 (2017) doi: 10.3399/c3020012. https://doi.org/10.3390/c3020012. DOI: https://doi.org/10.3390/c3020012

D. Prahas, Y. Kartika, N. Indraswati and S. Ismadji, Chem. Eng. J., 140, 32 (2008). https://doi.org/10.1016/j.cej.2007.08.032. DOI: https://doi.org/10.1016/j.cej.2007.08.032

F. T. Ademiluyi and E. O. David-West, ISRN Chem. Eng., 5 (2012). https://doi.org/10.5402/2012/674209. DOI: https://doi.org/10.5402/2012/674209

Jr. O. Pezoti, A. L. Cazetta, I PAF Souza, K.C. Bedin, A.C Martins, T.L Silva and V.C. Almeida, J. Ind. Eng. Chem., 20, 4401-7 (2014). https://doi.org/10.1016/j.jiec.2014.02.007. DOI: https://doi.org/10.1016/j.jiec.2014.02.007

Y. Gao, Q. Yue, S. Xu and B. Gao, Mater Lett., 146, 34 (2015). https://doi.org/10.1016/j.matlet.2015.01.161. DOI: https://doi.org/10.1016/j.matlet.2015.01.161

J. R. Baseri, P. N. Palanisamy and P. Sivakumar, Adv. Appl. Sci. Res., 3, 377 (2012).

R. M. Shrestha, A. P. Yadav and R. R. Pradhnanga, Research Journal of Chemical Science, 2, 80 (2015).

S.M. Yakout and G.S. El-Deen, Arabian Journal of Chemistry, 9, 1155 (2016). https://doi.org/10.1016/j.arabjc.2011.12.002. DOI: https://doi.org/10.1016/j.arabjc.2011.12.002

B.N. Sharma., B. Gogai and B. Kakoti, International Journal of Pharmaceutical Science and Research, 5, 1138 (2014).

H.P. Boehm, Carbon, 32, 759 (1994). https://doi.org/10.1016/0008-6223(94)90031-0. DOI: https://doi.org/10.1016/0008-6223(94)90031-0

E.L. Cochrane, S. Lu, S.W. Gibb and I.A. Villaescsa, J. Harzard. Mater., 137, 198 (2006). https://doi.org/10.1016/j.jhazmat.2006.01.054. PMid:16530940. DOI: https://doi.org/10.1016/j.jhazmat.2006.01.054

F.A. Batzias and D.K Sidiras, Fioresour. Technol, 98, 1208 (2007) https://doi.org/10.1016/j.biortech.2006.05.020. PMid:16815007. DOI: https://doi.org/10.1016/j.biortech.2006.05.020

H. Marsh and F. Rodriguez-Reinoso, Activated Carbon, Elsevier, 1st edition, 182 (2006). DOI: https://doi.org/10.1016/B978-008044463-5/50015-7

T.N. Trans, D.G. Kin and K.O. Seak-oh, Journal of Civil Engineering, 1 (2018).

D.T. Kose, A. Gharde and S. Gholse, EEMJ, 4, 919 (2015). https://doi.org/10.30638/eemj.2015.102. DOI: https://doi.org/10.30638/eemj.2015.102

B. Bernard, A. Jimoh, and J.O. Odigure, Research Journal of Chemical Science, 3, 3 (2013).

Y. Liu, Y. Guo, Y. Zhu, A.W. Gao, Z. Wang, Y. Ma and Z. Wang, J. of Harzard. Maer., 186, 1319 (2011). https://doi.org/10.1016/j.jhazmat.2010.12.007. PMid:21194835. DOI: https://doi.org/10.1016/j.jhazmat.2010.12.007

Q.S. Liu, T. Zheng, P. Wang and L. Guo, Indus. Crops. and Prod., 31, 233 (2010). https://doi.org/10.1016/j. indcrop.2009.10.011. DOI: https://doi.org/10.1016/j.indcrop.2009.10.011

K.T. Senthil, S.K. Chattopadhyay and L.R. Miranda, Chemical Engineering Communication, 204, 238 (2017). https://doi.org/10.1080/00986445.2016.1262358. DOI: https://doi.org/10.1080/00986445.2016.1262358

D. Vaddi, M. Venukata and M. Muralikrishna, Physical Chemistry Rsearch, 7, 11 (2019)

S.A. Odoemelam, F.K. Onwu, S.C. Uchechukwu and M.A. Chinedu, American Chemical Science Journal, 5, 253(2015). https://doi.org/10.9734/ACSJ/2015/14425. DOI: https://doi.org/10.9734/ACSJ/2015/14425